EAGER: Collaborative Research: Shear Dependent Reaction Kinetics in Particulate Electrochemical Energy Storage

EAGER:合作研究:颗粒电化学储能中的剪切相关反应动力学

基本信息

  • 批准号:
    1318341
  • 负责人:
  • 金额:
    $ 4.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

Lithium-ion batteries are considered the pre-eminent storage device for portable electronics, emerging green technologies, and electric vehicles. However, additives that are used to boost electronic and ionic conductivities of the electrode materials comprise about 1/3 of the battery volume, undermining both energy and power density of the cell, as well as impairing the cycle life of the system. Redox flow batteries on the other hand have shown great advantages on their scale-up flexibility, but their energy density is limited by the solubility of metal ion redox couples in liquid solvents. Recently, a new concept of flowing ion-storing semi-solid electroactive materials into and from a battery assembly to create a high energy and power density redox flow battery has been proposed. Realizing the tremendous potential of this new concept requires a fundamental understanding of the effects of moving electrode particles and flowing electrolytes on ion/charge transport as well as charging/discharging kinetics compared with those in static battery configurations. This collaborative project brings together Dr. Steingart specializing on electrochemical energy storage systems and Dr. Sun on complex fluids physics, integrating expertise on rheology, reaction chemistry, materials processing, and battery performance for the realization of semi- solid flow battery concept. The objective of this EAGER project is to create a baseline methodology for characterizing and predicting the electrochemical-mechanical coupling behavior of large mass fraction flowing slurry electrodes through integrated modeling and experiments.Intellectual MeritIn the semi-solid flow battery configuration, positive and/or negative electrode slurries are usually non- Newtonian and their stability is extremely challenging. Using an optically transparent flow cell and rate shear viscometry, the effect of interpacticle packing and flow on conductivity, and reaction rate are directly determined. By running conductivity experiments in parallel with overall reaction experiments, the PIs can decouple the electrical conductivity. Through the insights provided by our particle transport mechanism-resolved, electrochemistry-coupled model, PIs will be able to understand the coupled behavior of flow, viscosity, ionic conductivity, electrical conductivity, particle size, particle size distribution and electrode kinetics in semi-solid electrode flow systems.Broader ImpactsThe development of more cost-effective, long lasting, and high energy/power-density battery solution is a crucial step toward the electrification of the nation?s personal transportation and more stable and efficient electrical grids. Semi-solid flow batteries enable high energy density storage while removing lifetime concerns from the reacting material. This project builds a new exciting collaboration between chemical and mechanical engineers at Princeton and Drexel to enable efficient, reliable flow batteries. Both graduate and undergraduate students will benefit from the interdisciplinary nature of the proposed project.
锂离子电池被认为是便携式电子产品、新兴绿色技术和电动汽车的卓越存储设备。然而,用于提高电极材料电子和离子电导率的添加剂约占电池体积的1/3,会损害电池的能量和功率密度,并损害系统的循环寿命。另一方面,氧化还原液流电池在规模化灵活性方面显示出巨大的优势,但其能量密度受到金属离子氧化还原对在液体溶剂中的溶解度的限制。最近,提出了一种新概念,即将离子存储半固体电活性材料流入和流出电池组件,以创建高能量和功率密度的氧化还原液流电池。要认识到这一新概念的巨大潜力,需要对移动电极颗粒和流动电解质对离子/电荷传输以及充电/放电动力学(与静态电池配置相比)的影响有基本的了解。 该合作项目汇集了专注于电化学储能系统的Steingart博士和专注于复杂流体物理学的孙博士,整合了流变学、反应化学、材料加工和电池性能方面的专业知识,以实现半固态液流电池概念。该 EAGER 项目的目标是创建一种基线方法,通过集成建模和实验来表征和预测大质量分数流动浆料电极的电化学机械耦合行为。智力优点在半固态液流电池配置中,正极和/或负极电极浆料通常是非牛顿的,其稳定性极具挑战性。 使用光学透明流动池和速率剪切粘度计,可以直接测定颗粒间堆积和流动对电导率和反应速率的影响。通过与整体反应实验并行运行电导率实验,PI 可以解耦电导率。 通过我们的颗粒输运机制解析电化学耦合模型提供的见解,PI 将能够了解半固体中的流动、粘度、离子电导率、电导率、颗粒尺寸、颗粒尺寸分布和电极动力学的耦合行为电极流系统。更广泛的影响开发更具成本效益、持久、高能量/功率密度的电池解决方案是实现国家个人交通电气化和更稳定、更高效的电网的关键一步。半固态液流电池可实现高能量密度存储,同时消除反应材料的寿命问题。 该项目在普林斯顿大学和德雷塞尔大学的化学和机械工程师之间建立了令人兴奋的新合作,以实现高效、可靠的液流电池。研究生和本科生都将从拟议项目的跨学科性质中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Sun其他文献

Highly Photoluminescent Monolayer MoS 2 and WS 2 Achieved via Superacid Assisted Vacancy Reparation and Doping Strategy
通过超酸辅助空位修复和掺杂策略实现高光致发光单层 MoS 2 和 WS 2
  • DOI:
    10.1002/lpor.202100104
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiushi Feng;Ying Sun;Yuanzheng Li;Jiaxu Yan;Weiheng Zhong;Guochun Yang;Weizhen Liu;Haiyang Xu;Yichun Liu
  • 通讯作者:
    Yichun Liu
The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: A pooled analysis of 23 clinical trials and 8,436 patients.
癌症中免疫检查点抑制剂引起的免疫相关不良事件的发病时间和解决模式:对 23 项临床试验和 8,436 名患者的汇总分析。
  • DOI:
    10.1200/jco.2020.38.15_suppl.e15110
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    45.3
  • 作者:
    Si;Cheng Xu;Ling;Y. Mao;Wen;Lei Chen;Y. Zhang;Ying Guo;Qing Liu;Ying Sun;Jun Ma
  • 通讯作者:
    Jun Ma
Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn3Co0.61Mn0.39N compound
反钙钛矿Mn3Co0.61Mn0.39N化合物中的巨大零场冷却交换偏置行为
  • DOI:
    10.1103/physrevmaterials.3.024409
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ying Sun;Pengwei Hu;Kewen Shi;Hui Wu;Sihao Deng;Qingzhen Huang;Zhiyong Mao;Ping Song;Lei Wang;Weichang Hao;Shenghua Deng;Cong Wang
  • 通讯作者:
    Cong Wang
Research on the Shaanxi Province Urbanization Development Model and the Related Economic Growth Promotion Effect
Nonlinear Bending of Sandwich Plates with Graphene Nanoplatelets Reinforced Porous Composite Core under Various Loads and Boundary Conditions
不同载荷和边界条件下石墨烯纳米片增强多孔复合材料夹芯板的非线性弯曲
  • DOI:
    10.3390/math10183396
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xudong Fan;Aiwen Wang;Pengcheng Jiang;Sijin Wu;Ying Sun
  • 通讯作者:
    Ying Sun

Ying Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Sun', 18)}}的其他基金

REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
  • 批准号:
    2349580
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323023
  • 财政年份:
    2023
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
  • 批准号:
    2300317
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
  • 批准号:
    2310530
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets Data
MSA:叶绿素荧光动力学及其与从叶子到大陆的光合作用的关系:理论与数据的结合
  • 批准号:
    1926488
  • 财政年份:
    2019
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Intergovernmental Personnel Award
政府间人才奖
  • 批准号:
    1940923
  • 财政年份:
    2019
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Intergovernmental Personnel Award
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
  • 批准号:
    1804374
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
  • 批准号:
    1705745
  • 财政年份:
    2017
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Scalable Capillary-Driven Assembly of Asymmetric Nanoparticles via Inkjet Printing
通过喷墨打印可扩展毛细管驱动的不对称纳米粒子组装
  • 批准号:
    1200385
  • 财政年份:
    2012
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Multi-scale Study of Coupled Reaction and Wetting in Droplet Spreading
液滴铺展中的耦合反应和润湿的多尺度研究
  • 批准号:
    1104835
  • 财政年份:
    2011
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了