PFI: BIC- Advanced SiC high temperature integrated circuits

PFI:BIC-先进SiC高温集成电路

基本信息

  • 批准号:
    1318249
  • 负责人:
  • 金额:
    $ 59.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This Partnerships for Innovation: Building Innovation Capacity project from Auburn University will be focused on building the basic foundations of a silicon-based high temperature integrated circuit technology. The final goal is to demonstrate a major polytype of silicon carbide (4H-SiC) metal-oxide semiconductor field-effect-transistor (that is, a 4H-SiC MOSFET)-based operational amplifier, operating at 250°C or higher. 4H-SiC is a wide-band gap semiconductor with a high critical breakdown field, high thermal conductivity, good bulk electron mobility, high chemical inertness, and mechanical hardness. These properties make 4H-SiC an extremely attractive material for electronics operating in harsh environments and at temperatures higher than 250°C, conditions under which conventional silicon-based electronics are very inefficient. In addition, the ability of SiC to oxidize to silicon dioxide, an insulator, naturally makes for MOSFETs. MOSFETs are voltage controlled electronic switches that are preferred over other devices as they offer a great deal of flexibility for circuit design. An efficient 4H-SiC MOSFET-based integrated circuit (IC) technology operating at high temperature will have a positive socio-economic impact in a variety of industrial and military applications. A limitation for employing 4H-SiC MOSFETs for this purpose is the low mobility of electrons in the conducting channel. This is primarily associated with a high density of traps at the oxide-SiC interface that results in carrier trapping and reduction of channel mobility. Recently, the Auburn group has demonstrated an advanced interface passivation process by incorporating phosphorus at and near the oxide-4H-SiC interface. This process results in a significantly reduced trap densities compared to the industry standard processes and accordingly results in at least a factor of two higher electron channel mobility compared to the state-of-the-art. The higher mobility is expected to result in significantly superior SiC operational-amplifiers. The intellectual merit of this proposal lies in the transfer of a fundamental materials science discovery to advanced applications taking future commercialization issues into consideration.The broader impacts of this research are increasing U.S. technological competitiveness, increasing the business viability of small business partners, and developing students capable of contributing to the semiconductor industry. A high performance 4H-SiC IC technology has the potential to open a variety of new applications areas and markets. Some notable application areas are sensing and control circuits for geothermal, automotive and aeronautical sectors. Such technologies will have significant positive impact on U.S. competitiveness. The increased innovation capacity of the small business partners resulting from the success of this program would set the stage for building commercial prototypes to penetrate niche markets, increasing their business viability, and thus a future role in the nascent silicon carbide semiconductor industry. The success of such a technology would also create new possibilities for other end-user application-oriented businesses. An important aspect of the program is related to the education of graduate students. Students involved in this project will be exposed to the "food chain of semiconductor technology", ranging from basic semiconductor materials science to technology development and applications during their master's or doctoral research. Hands-on training related to a wide range of scientific and engineering problems will result in the development of young, highly trained scientists for the U.S. semiconductor industry. Additionally, the program will include workshops for high school students and teachers. Finally, existing close interactions with Tuskegee University, a local historically black university will be consolidated in this program.Partners at the inception of the project are the lead institution: Auburn University; and two small technology-based businesses: CoolCAD Electronics LLC (College Park, MD), which performs analysis, design and prototyping for cryogenic, SiC and infrared (IR) electronics; and United Silicon Carbide Inc.(Monmouth Junction, NJ), which focuses on the design, fabrication, and commercialization of SiC technologies.
奥本大学的创新合作伙伴关系:建设创新能力项目将专注于建立硅基高温集成电路技术的基础,最终目标是展示碳化硅(4H-SiC)金属的主要多型。基于氧化物半导体场效应晶体管(即 4H-SiC MOSFET)的运算放大器,工作温度为 250°C 或更高,4H-SiC 是一种具有高临界击穿的宽带隙半导体。场、高热导率、良好的体电子迁移率、高化学惰性和机械硬度,这些特性使 4H-SiC 成为在恶劣环境和高于 250°C 的温度下运行的电子设备极具吸引力的材料,在这些条件下,传统硅此外,SiC 的氧化能力优于绝缘体二氧化硅,这自然使得 MOSFET 成为优于其他器件的电压控制电子开关。电路设计具有很大的灵活性,在高温下运行的基于 4H-SiC MOSFET 的高效集成电路 (IC) 技术将对各种工业和军事应用产生积极的社会经济影响。用于此目的的 MOSFET 的特点是导电沟道中的电子迁移率较低,这主要与氧化物-SiC 界面处的高密度陷阱有关,导致载流子俘获和沟道迁移率降低。通过在氧化物-4H-SiC 界面处及其附近掺入磷来实现先进的界面钝化工艺,与行业标准工艺相比,该工艺可显着降低陷阱密度,因此与传统工艺相比,电子通道迁移率至少高出两倍。更高的迁移率预计将带来显着优越的 SiC 运算放大器,该提案的智力价值在于将基础材料科学发现转移到先进的应用中,并考虑到未来的商业化问题。更广泛的影响这项研究正在提高美国的技术竞争力,提高小型企业合作伙伴的商业生存能力,并培养能够为半导体行业做出贡献的学生。高性能 4H-SiC IC 技术有潜力开辟各种新的应用领域和市场。一些应用领域包括地热、汽车和航空领域的传感和控制电路,此类技术将对美国的竞争力产生重大积极影响。该计划的成功提高了小型企业合作伙伴的创新能力,将为建设奠定基础。商业的原型渗透利基市场,提高其业务可行性,从而在新兴的碳化硅半导体行业中发挥作用,这种技术的成功也将为其他面向最终用户的应用业务创造新的可能性。项目与研究生教育相关,参与该项目的学生将在硕士或博士研究期间接触到“半导体技术食物链”,从基础半导体材料科学到技术开发和应用。与广泛的科学和工程问题相关将为美国半导体行业培养训练有素的年轻科学家。此外,该计划还将包括为高中生和教师举办的研讨会。最后,与当地历史悠久的黑人大学塔斯基吉大学的密切互动也将在此得到巩固。该项目启动时的合作伙伴包括牵头机构:奥本大学;以及两家小型技术型企业:CoolCAD Electronics LLC(马里兰州学院公园),该公司对低温、碳化硅和碳化硅进行分析、设计和原型制作。红外 (IR) 电子产品;以及 United Silicon Carbide Inc.(新泽西州蒙茅斯交汇处),该公司专注于 SiC 技术的设计、制造和商业化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarit Dhar其他文献

The utility and accuracy of ChatGPT in providing post-operative instructions following tonsillectomy: A pilot study.
ChatGPT 在扁桃体切除术后提供术后指导方面的实用性和准确性:一项试点研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Sarit Dhar;D. Kothari;Missael Vasquez;Travis Clarke;Andrew J. Maroda;Wade G. McClain;Anthony Sheyn;Robert M. Tuliszewski;Dennis M. Tang;Sanjeet V. Rangarajan
  • 通讯作者:
    Sanjeet V. Rangarajan
Clinical Conundrum: An Unusual Case of Persistent Dyspnea and Eructation.
临床难题:持续性呼吸困难和嗳气的不寻常病例。
  • DOI:
    10.1007/s00455-023-10593-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Sarit Dhar;Janis Deane;Stephen R. Chorney;S. Dhar
  • 通讯作者:
    S. Dhar

Sarit Dhar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

商业银行不当行为风险传染的路径、机理与治理——基于员工社会网络的研究
  • 批准号:
    72371125
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
太赫兹准BIC超表面用于食用植物油中农药残留检测的研究
  • 批准号:
    32371983
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
商业银行普惠金融个体违约风险评估:基于司法案情知识图谱的增强模型
  • 批准号:
    72371126
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
回音壁微腔中的光学BIC模式及应用
  • 批准号:
    12334016
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
气候风险视角下的商业银行经营与决策:机制分析与实证检验
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

トロイダル双極子とBICの融合による近赤外光完全吸収シリコンメタ表面の実現
通过环形偶极子与BIC融合实现完全吸收近红外光的硅超表面
  • 批准号:
    24KJ1687
  • 财政年份:
    2024
  • 资助金额:
    $ 59.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
  • 批准号:
    10931181
  • 财政年份:
    2023
  • 资助金额:
    $ 59.88万
  • 项目类别:
BIC
商业银行
  • 批准号:
    640144
  • 财政年份:
    2022
  • 资助金额:
    $ 59.88万
  • 项目类别:
    Collaborative R&D
Biomolecular sensing in all-dielectric metasurfaces with collective resonances
具有集体共振的全介电超表面中的生物分子传感
  • 批准号:
    22K20496
  • 财政年份:
    2022
  • 资助金额:
    $ 59.88万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Dynamique des populations de botryches (Botrychium spp) au parc national du Bic
比克国家公园的贵腐菌 (Botrychium spp) 种群动态
  • 批准号:
    564767-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 59.88万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了