Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
基本信息
- 批准号:1306866
- 负责人:
- 金额:$ 25.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET 1306866/1307550/1307743Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillarsPI(s) Ganapathysubramanian (Iowa State U.), DiCarlo (UCLA), Zola (Rutgers)Controlling the shape and location of a fluid stream provides a fundamental tool for creating structured materials, preparing biological samples, and engineering heat and mass transport. Methods to manipulate the cross-sectional shape of fluids have focused on creating chaos and mixing by fluid twisting instead of ordering or structuring streams with precise sequences of fluid perturbations. The ability to engineer the cross-sectional shape of a fluid using the integrated inertial flow deformations induced by sequences of simple microstructures (i.e. pillars) was recently demonstrated. Discretization of single pillar operations followed by their programmed superposition allows for the hierarchical assembly of complex flow programs. Although this approach has allowed for the sculpting of complex fluid shapes, creating user-defined flow shapes important for practical applications currently requires laborious and time-consuming trial and error design iterations, and often complex fluid shapes of interest are not achievable in a reasonable time frame. The ability to create a user-defined flow shape and automatically determine a sequence of pillars that yields this shape is a significant and impactful advance, which is ideally addressed by computational approaches. This challenge motivates the objectives of the CDS&E project: (i) Computationally explore and create a library of pillar-induced transformations annotated at different levels of granularity to aid in computational selection using parallel CFD simulations. (ii) Develop efficient computational methods to solve the inverse problem and select pillar sequences for a set of desired flow transformation. This part of the project will explore mathematical and computational issues related to uniqueness of solution sequences, scalable approaches to deal with the large libraries of pillar transformations, and choice of cost-functionals to enable efficient solution to the design problem. (iii) Test the computational framework and associated solutions by fabricating microfluidic designs with the defined pillar sequences that address three transformative applications in medicine and materials, including fabricating tailored cross-sectional polymer fibers, and capturing biomolecules on microchannel surfaces.The introduction of a general strategy to program fluid streams in which the complexity of the nonlinear equations of fluid motion are abstracted from the user can impact biological, chemical and materials automation in the same way that abstraction of semiconductor physics from computer programmers enabled a revolution in computation. As part of dissemination efforts, gaming and educational modules involving immersive simulations and directed rubix-cube like puzzles will be developed that will allow the public and interested parties to experiment with different pillar programs and learn about fluid mechanics and applications in a gaming environment. These outreach and workforce development activities will emphasize to the community the crucial role of computing in science and technology. This outreach will synergistically enable crowd-sourced design of complex flow transformations for applications that have a major impact on cell diagnostics, nano-materials fabrication, and thermal cooling.
CBET 1306866/1307550/1307743合作研究:CDS&E:使用编程的微柱序列塑造流体流动PI(s) Ganapathysubramanian (爱荷华州立大学)、DiCarlo (加州大学洛杉矶分校)、Zola (罗格斯大学)控制流体流的形状和位置为创建结构化材料、制备生物样品以及工程热和质量提供了基本工具 运输。 操纵流体横截面形状的方法主要集中在通过流体扭曲来产生混乱和混合,而不是通过精确的流体扰动序列来排序或结构化流。 最近证明了利用由简单微结构(即柱)序列引起的集成惯性流变形来设计流体横截面形状的能力。单支柱操作的离散化及其编程叠加允许复杂流程程序的分层组装。 尽管这种方法允许雕刻复杂的流体形状,但创建对实际应用很重要的用户定义的流动形状目前需要费力且耗时的试错设计迭代,并且通常无法在合理的时间内实现感兴趣的复杂流体形状框架。 创建用户定义的流动形状并自动确定产生该形状的支柱序列的能力是一项重大且有影响力的进步,理想情况下可以通过计算方法来解决。这一挑战激发了 CDS&E 项目的目标:(i) 通过计算探索并创建一个以不同粒度级别注释的柱诱导变换库,以帮助使用并行 CFD 模拟进行计算选择。 (ii) 开发有效的计算方法来解决逆问题并为一组所需的流动变换选择支柱序列。该项目的这一部分将探索与解决方案序列的唯一性相关的数学和计算问题、处理大型支柱变换库的可扩展方法以及成本函数的选择以实现设计问题的有效解决方案。 (iii) 通过制造具有定义的支柱序列的微流体设计来测试计算框架和相关解决方案,这些设计解决了医学和材料领域的三种变革性应用,包括制造定制的横截面聚合物纤维,以及在微通道表面捕获生物分子。对流体流进行编程的策略,其中流体运动非线性方程的复杂性从用户那里抽象出来,可以影响生物、化学和材料自动化,就像计算机程序员抽象半导体物理引发计算革命一样。作为传播工作的一部分,将开发涉及沉浸式模拟和定向魔方谜题的游戏和教育模块,使公众和感兴趣的各方能够尝试不同的支柱程序,并了解游戏环境中的流体力学和应用。这些外展和劳动力发展活动将向社区强调计算在科学技术中的关键作用。这种推广将协同实现复杂流动变换的众包设计,这些设计对细胞诊断、纳米材料制造和热冷却有重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baskar Ganapathysubramanian其他文献
Out-of-plane faradaic ion concentration polarization: stable focusing of charged analytes at a three-dimensional porous electrode
- DOI:
10.1039/d1lc01011e - 发表时间:
2022-01 - 期刊:
- 影响因子:6.1
- 作者:
Beatrise Berzina;Sungu Kim;Umesha Peramune;Kumar Saurabh;Baskar Ganapathysubramanian;Robbyn K. Anand - 通讯作者:
Robbyn K. Anand
Simulation-guided analysis of resonant soft X-ray scattering for determining the microstructure of triblock copolymers
- DOI:
10.1039/d2me00096b - 发表时间:
2022-08 - 期刊:
- 影响因子:3.6
- 作者:
Veronica G. Reynolds;Devon H. Callan;Kumar Saurabh;Elizabeth A. Murphy;Kaitlin R. Albanese;Yan-Qiao Chen;Claire Wu;Eliot Gann;Craig J. Hawker;Baskar Ganapathysubramanian;Christopher M. Bates;Michael L. Chabinyc - 通讯作者:
Michael L. Chabinyc
3D reconstruction of plants using probabilistic voxel carving
使用概率体素雕刻对植物进行 3D 重建
- DOI:
- 发表时间:
2023-10 - 期刊:
- 影响因子:8.3
- 作者:
Jiale Feng;Mojdeh Saadati;Talukder Jubery;Anushrut Jignasu;Aditya Balu;Yawei Li;Lakshmi Attigala;Patrick S. Schnable;Soumik Sarkar;Baskar Ganapathysubramanian;et al - 通讯作者:
et al
Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches
- DOI:
10.1039/d2sc04676h - 发表时间:
2022-11 - 期刊:
- 影响因子:8.4
- 作者:
Vinayak Bhat;Parker Sornberger;Balaji Sesha Sarath Pokuri;Rebekah Duke;Baskar Ganapathysubramanian;Chad Risko - 通讯作者:
Chad Risko
Computational characterization of charge transport resiliency in molecular solids
- DOI:
10.1039/d1me00163a - 发表时间:
2022-03 - 期刊:
- 影响因子:3.6
- 作者:
Balaji Sesha Sarath Pokuri;Sean M. Ryno;Ramin Noruzi;Chad Risko;Baskar Ganapathysubramanian - 通讯作者:
Baskar Ganapathysubramanian
Baskar Ganapathysubramanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baskar Ganapathysubramanian', 18)}}的其他基金
LEAP-HI: AI-Optimized 3D Printing of Super-Soft Materials for Personalized Sensing
LEAP-HI:人工智能优化的超软材料 3D 打印,实现个性化传感
- 批准号:
2053760 - 财政年份:2021
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: QRM: Microstructure Manifold Analysis Using Hierarchical Set of Morphological, Topological, and Process Descriptors
合作研究:QRM:使用形态、拓扑和过程描述符的分层集进行微观结构流形分析
- 批准号:
1906194 - 财政年份:2019
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: Solution Processing of Organic Semiconductors: A Coupled Atomistic-Continuum Framework
合作研究:有机半导体的溶液处理:耦合原子连续体框架
- 批准号:
1563359 - 财政年份:2016
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications
合作研究:光伏应用聚合物/PbS 混合物的化学控制
- 批准号:
1437636 - 财政年份:2014
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Controlling Hierarchical Nanostructures in Conjugated Polymers
DMREF/合作研究:控制共轭聚合物中的分层纳米结构
- 批准号:
1435587 - 财政年份:2014
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
CAREER: A Predictive Modeling Framework for Exploring Process-Structure-Property Relationships in Organic Solar Cells
职业生涯:用于探索有机太阳能电池工艺-结构-性能关系的预测建模框架
- 批准号:
1149365 - 财政年份:2012
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
- 批准号:
2309102 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
- 批准号:
2302764 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Continuing Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
Standard Grant