Geometric Structures in Field and String Theory

场论和弦论中的几何结构

基本信息

  • 批准号:
    1306313
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with the study of geometric structures occurring in field and string theories using methods from mathematics as well as from physics. The intertwine of research in both fields has led to many surprising connections and new ideas. A rich source of insights is the study of the deformation of the geometrical structures associated to physical quantities. This has led to an understanding of physical dualities and has uncovered a rich variety of new mathematical structures. The change of certain characteristics of the underlying mathematical description known as wall crossing is a very powerful feature of many mathematical deformation problems. These questions are best studied using mirror symmetry which combines techniques from various fields of mathematics. The projects proposed here intend to derive new mathematical ideas, structures and tools associated to physical deformation problems shedding thus new light both on the physical theories as well as on the interconnections between different mathematical structures. A class of objects which is suitable for studying wall crossing phenomena are supersymmetric BPS (Bogomol'nyi-Prasad-Sommerfield) objects. These have played a prominent role in understanding field theories, dualities and black hole micro-state counting problems. They will be studied in the context of string theory compactifications where they are associated to a special set of objects, the D-branes, which are studied using tools from topological string theory and mirror symmetry. These allow one to systematically study the dependence of these on the moduli of the theory, leading to powerful equations and important insights. Understanding BPS spectra and their jumping is furthermore crucial to unravel their deep role in the description of physical theories. By connecting ideas from theoretical physics and very diverse areas of mathematics such as differential and algebraic geometry, representation theory and number theory, these projects are pushing the boundaries of knowledge in these fields. The PI is a pioneer and leader in the field of geometry and mathematical aspects of string theory. Broader Impacts: Lying at the intersection of cutting edge research in both physics and mathematics, the project seeks to enhance the interactions and communication between the two communities. An integral part is to train postdocs and graduate students to be comfortable using methods and ideas from various fields and to conduct advanced cross disciplinary research. The PI is also actively bringing fundamental science and research to the public through various talks, presentations and publications.
这项研究涉及使用数学和物理学的方法来研究场论和弦理论中出现的几何结构。这两个领域的研究相互交织,产生了许多令人惊讶的联系和新想法。与物理量相关的几何结构变形的研究是见解的丰富来源。这导致了对物理二元性的理解,并发现了丰富多样的新数学结构。基础数学描述的某些特征(称为穿墙)的变化是许多数学变形问题的一个非常强大的特征。这些问题最好使用镜像对称来研究,镜像对称结合了各个数学领域的技术。这里提出的项目旨在导出与物理变形问题相关的新数学思想、结构和工具,从而为物理理论以及不同数学结构之间的互连提供新的启示。适合研究穿壁现象的一类物体是超对称 BPS(Bogomol'nyi-Prasad-Sommerfield)物体。这些在理解场论、对偶性和黑洞微态计数问题方面发挥了突出作用。它们将在弦理论紧化的背景下进行研究,其中它们与一组特殊的物体(D 膜)相关联,使用拓扑弦理论和镜像对称的工具来研究它们。这些使得人们能够系统地研究它们对理论模的依赖性,从而得出强大的方程和重要的见解。此外,了解 BPS 谱及其跳跃对于揭示它们在物理理论描述中的深层作用至关重要。通过将理论物理学和微分几何、代数几何、表示论和数论等不同的数学领域的思想联系起来,这些项目正在突破这些领域的知识边界。 PI 是弦理论几何和数学领域的先驱和领导者。更广泛的影响:该项目位于物理和数学前沿研究的交叉点,旨在加强两个社区之间的互动和沟通。一个不可或缺的部分是培训博士后和研究生,使其能够轻松地使用各个领域的方法和思想,并进行先进的跨学科研究。 PI 还通过各种演讲、演讲和出版物积极向公众介绍基础科学和研究成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shing-Tung Yau其他文献

A Geometric Understanding of Deep Learning
对深度学习的几何理解
  • DOI:
    10.1016/j.eng.2019.09.010
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Na Lei;Dongsheng An;Yang Guo;Kehua Su;Shixia Liu;Zhongxuan Luo;Shing-Tung Yau;Xianfeng Gu
  • 通讯作者:
    Xianfeng Gu
Ricci-flat graphs with girth at least five
周长至少为 5 的 Ricci 平面图
A Geometric View of Optimal Transportation and Generative Model
最优运输的几何视图和生成模型
  • DOI:
    10.1016/j.cagd.2018.10.005
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Na Lei;Kehua Su;Li Cui;Shing-Tung Yau;Xianfeng Gu
  • 通讯作者:
    Xianfeng Gu
Davies-Gaffney-Grigor'yan lemma on graphs
图上的 Davies-Gaffney-Grigor'yan 引理
Heat kernels on forms defined on a subgraph of a complete graph
在完整图的子图上定义的形式上加热内核
  • DOI:
    10.1007/s00208-021-02215-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yong Lin;Sze-Man Ngai;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau

Shing-Tung Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shing-Tung Yau', 18)}}的其他基金

Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
  • 批准号:
    1737873
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Concluding conference of the Special Program on Nonlinear Equations: Progress and Challenges in Nonlinear Equations
非线性方程特别计划闭幕会议:非线性方程的进展与挑战
  • 批准号:
    1600414
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Analysis, Geometry, and Mathematical Physics
分析、几何和数学物理
  • 批准号:
    1607871
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Analysis for Computer and Social Networks
协作研究:计算机和社交网络的几何分析
  • 批准号:
    1418252
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Nonlinear Analysis on Sympletic, Complex Manifolds, General Relativity, and Graphs
辛、复流形、广义相对论和图的非线性分析
  • 批准号:
    1308244
  • 财政年份:
    2013
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG 合作研究:广义几何、弦理论和变形
  • 批准号:
    1159412
  • 财政年份:
    2012
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Geometry of Strings and Gravity
弦与重力的几何
  • 批准号:
    0937443
  • 财政年份:
    2010
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1001688
  • 财政年份:
    2010
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似国自然基金

可液化场地地铁车站地下框架结构地震损伤风险分析方法研究
  • 批准号:
    52308506
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑断层-场地耦合效应的地铁地下车站结构抗震性能与韧性提升研究
  • 批准号:
    52378397
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
长壁采场地质信息可见光-红外结构光立体视觉感知机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超设计地震作用下非基岩场地核电站结构动力灾变机理与新型三维隔震技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于MRE支座的软土场地结构智能隔震理论与方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Topology of conformally flat Lorentz manifold and various geometric structures
共形平坦洛伦兹流形拓扑和各种几何结构
  • 批准号:
    24540087
  • 财政年份:
    2012
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on topological invariants derived from linear representations over a finite field of fundamental groups and geometric structures of 3-manifolds
基本群有限域上的线性表示拓扑不变量的研究和3-流形的几何结构
  • 批准号:
    17540064
  • 财政年份:
    2005
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Twistor correspondence between different geometric structures and application to differential equations and field theory
不同几何结构之间的扭量对应关系及其在微分方程和场论中的应用
  • 批准号:
    14540097
  • 财政年份:
    2002
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of relations between topological properties and differential geometric properties of foliated structures.
研究叶状结构的拓扑性质和微分几何性质之间的关系。
  • 批准号:
    13640056
  • 财政年份:
    2001
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了