Precision Measurements of Quantum Scattering Phase Shifts with a Juggling Fountain Clock
使用杂耍喷泉钟精确测量量子散射相移
基本信息
- 批准号:1311570
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This experimental research program will make precision measurements of quantum scattering phase shifts of ultracold cesium (Cs) atoms in an atomic clock. The group has demonstrated these measurements with a new type of scattering experiment that scatters a cesium atom in a coherent superposition of its two clock states off atoms in a pure state at ultracold temperatures. Each clock state experiences an s-wave scattering phase shift and, by detecting only the scattered part of each atom's wavefunction, the difference of the scattering phase shifts is directly observed as a phase shift of Ramsey fringes. A unique feature is that the observed difference of the scattering phase shifts is independent of the atomic density, providing atomic clock accuracy to scattering measurements. With high precision, the group has observed a number of Feshbach resonances with two clouds colliding at energies between 10 and 50 microKelvin, and recently at collision energies of order 1 microKelvin, within a single cloud. They will perform a first accuracy demonstration, which is expected to significantly improve the knowledge of the Cs-Cs interactions. The scattering lengths are presently insufficiently known that they impact the accuracy and operational parameters of cesium clocks, particularly the Atomic Clock Ensemble in Space (ACES) clock scheduled to fly on the International Space Station. The group will evaluate systematic errors, principally due to backgrounds, and improve the precision of the phase measurements. An improved theoretical understanding can guide future measurements, potentially studying different angular momenta, versus energy and magnetic field, and for various internal states. The group will also collaborate with national labs around the world to improve the accuracy of the best atomic clocks. The group provides a unique expertise on the design of microwave cavities for primary atomic clocks and participates in the accuracy evaluation of primary atomic clocks. Ideas developed as part of the juggling experimental work provided the explanation of the interactions of ultracold fermions for optical lattice clocks, recently experimentally observed in a chip-scale atomic clock and with a radio frequency transition in Li-6 fermions. Accurate time keeping is crucial for navigation, communication, global positioning, and national security. Recent research of this group has significantly advanced the accuracy of the atomic clocks that contribute to International Atomic Time (TAI). Their contributions were essential to realize the currently most accurate atomic clock. Novel advancements by the research have reduced many large systematic errors that previously limited the performance of atomic clocks. Earlier work had led to rubidium being adopted as the first amendment to the definition of the International System of Units (SI) second, novel space clock designs, and an understanding of the frequency shifts due to ultracold collisions in precision measurements. The research will further advance the most accurate precision measurements and the understanding of ultracold atom-atom interactions. The training of graduate and undergraudate students in many areas of modern technology from lasers, electro-optics, radio-frequency and microwave techniques, and atomic clocks and frequency control, is important for the development of the nation's scientific workforce.
该实验研究项目将精确测量原子钟中超冷铯 (Cs) 原子的量子散射相移。该小组通过一种新型散射实验证明了这些测量结果,该实验在超冷温度下将铯原子以其两个时钟状态的相干叠加方式散射到纯状态的原子上。每个时钟状态都会经历一个 s 波散射相移,并且通过仅检测每个原子波函数的散射部分,可以直接观察到散射相移的差异作为拉姆齐条纹的相移。一个独特的功能是,观察到的散射相移差异与原子密度无关,从而为散射测量提供了原子钟精度。该小组高精度地观察到了许多费什巴赫共振,其中两个云在 10 到 50 微开尔文之间的能量碰撞,最近在单个云内以 1 微开尔文的碰撞能量观测到。他们将进行首次准确性演示,预计将显着提高对 Cs-Cs 相互作用的了解。目前对散射长度的了解还不够,它们会影响铯钟的精度和运行参数,特别是计划在国际空间站飞行的太空原子钟组合(ACES)时钟。该小组将评估主要由背景引起的系统误差,并提高相位测量的精度。改进的理论理解可以指导未来的测量,有可能研究不同的角动量、能量和磁场以及各种内部状态。该小组还将与世界各地的国家实验室合作,提高最好原子钟的准确性。该小组在初级原子钟微波腔体设计方面拥有独特的专业知识,并参与初级原子钟的精度评估。 作为杂耍实验工作的一部分而提出的想法提供了对光学晶格钟的超冷费米子相互作用的解释,最近在芯片级原子钟中实验观察到了这种相互作用,并与Li-6费米子中的射频跃迁进行了实验。准确的计时对于导航、通信、全球定位和国家安全至关重要。 该小组最近的研究显着提高了国际原子时(TAI)原子钟的准确性。他们的贡献对于实现目前最精确的原子钟至关重要。这项研究的新进展减少了许多以前限制原子钟性能的大型系统误差。 早期的工作导致铷被采用作为国际单位制(SI)第二定义的第一修正案,新颖的空间时钟设计,以及对精密测量中超冷碰撞引起的频移的理解。该研究将进一步推进最准确的精密测量和对超冷原子间相互作用的理解。在激光、电光、射频和微波技术、原子钟和频率控制等现代技术许多领域对研究生和本科生的培训对于国家科学队伍的发展非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt Gibble其他文献
ミクロネシア連邦ポーンペイ州のナンマトル遺跡およびチェムェン島所在遺跡の現状調査報告書
密克罗尼西亚联邦波纳佩州南马特鲁岛和切姆文岛遗址现状调查报告
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Atsushi Yamaguchi;Marianna S. Safronova;Kurt Gibble;and Hidetoshi Katori;片岡修・長岡拓也・石村智 - 通讯作者:
片岡修・長岡拓也・石村智
Clock-line-mediated Sisyphus Cooling
时钟线介导的西西弗斯冷却
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chun;Jacob L. Siegel;Benjamin D. Hunt;Tanner Grogan;Y. Hassan;K. Beloy;Kurt Gibble;Roger C. Brown;Andrew D. Ludlow - 通讯作者:
Andrew D. Ludlow
Narrow-line laser cooling of cadmium towards a portable optical lattice clock
针对便携式光学晶格钟的镉的窄线激光冷却
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Atsushi Yamaguchi;Kurt Gibble;Hidetoshi Katori - 通讯作者:
Hidetoshi Katori
時計遷移分光に向けたCd原子のレーザー冷却III
用于时钟跃迁光谱 III 的 Cd 原子激光冷却
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
山口 敦史;Kurt Gibble;香取 秀俊 - 通讯作者:
香取 秀俊
Kurt Gibble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt Gibble', 18)}}的其他基金
Precision Measurements with Laser-Cooled Cadmium: Optical-Lattice Clock and Cold Collision Experiments
使用激光冷却镉进行精密测量:光学晶格时钟和冷碰撞实验
- 批准号:
2012117 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Laser-Cooling Cadmium for Optical Atomic Clock, Cold Collisions, and Quantum Gas Experiments
用于光学原子钟、冷碰撞和量子气体实验的激光冷却镉
- 批准号:
1607295 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Precision Measurements of Scattering Phase Shifts in a Juggling Atomic Clock
杂耍原子钟中散射相移的精确测量
- 批准号:
1209662 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Interferometric Quantum Scattering in a Juggling Atomic Clock
杂耍原子钟中的干涉量子散射
- 批准号:
0800233 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Quantum Scattering in a Juggling Atomic Fountain
杂耍原子喷泉中的量子散射
- 批准号:
0196519 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Quantum Scattering in a Juggling Atomic Fountain
杂耍原子喷泉中的量子散射
- 批准号:
9732455 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
- 批准号:12374385
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
超导线路量子系统中基于测量反馈控制的开放量子系统实验研究
- 批准号:12374471
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
适应喧闹环境的量子光力学测量理论研究
- 批准号:12374328
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于连续量子非破坏测量反馈的原子钟纠缠增强机制研究
- 批准号:12304543
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用腔增强量子非破坏性测量提高镱光钟稳定度的实验研究
- 批准号:12374467
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Quantum photonic sensors: enabling measurements with unprecedented precision using entangled photons
量子光子传感器:使用纠缠光子实现前所未有的精确测量
- 批准号:
576210-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum Standards and Ultimate Precision Measurements Based on Single Electrons
基于单电子的量子标准和终极精密测量
- 批准号:
18H05258 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Search for Physics Beyond the Standard Model from the Higgs Precision Measurements
从希格斯精密测量中寻找超越标准模型的物理
- 批准号:
15K05047 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high precision SQUID magnetometer for measurements under high pressure and very low temperature and its application to the research on novel quantum phases
高压低温测量高精度SQUID磁力计研制及其在新型量子相研究中的应用
- 批准号:
15K13515 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum Information for Precision Measurements
用于精密测量的量子信息
- 批准号:
EP/L001713/1 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Research Grant