Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
基本信息
- 批准号:1303178
- 负责人:
- 金额:$ 44.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:Solution processing is highly desirable for large area production of organic electronic devices. Film deposition from solution is usually performed at the kinetic crystallization regime in high throughput industrial fabrication processes. Attaining single crystals directly through solution printing remains challenging due to kinetic solvent evaporation, stochastic nucleation, and fluid flow instabilities during the printing process. Most solution processing techniques for fabricating single crystals operate at slow quasi-equilibrium conditions, rendering these methods undesirable for industrial applications. These challenges call for a better fundamental understanding of solution crystallization processes of organic semiconductors (OSCs) to allow the development of better solution processing methods for high-throughput fabrication of high performance electronic devices. In this project, supported by the Solid State and Materials Chemistry program, ways to control crystal nucleation and molecular packing will be obtained using a solution shearing (SS) platform as a model system. The parameters for controlled crystal growth from single nucleation sites and methods to obtain patterned single-crystalline domains will be investigated. Finally, a comprehensive understanding and approach will be developed for achieving patterned single-crystalline domains with desired molecular packing. Charge transport properties of the resulting films will be measured to characterize effects of morphology and molecular packing on charge transport. This work will develop fundamental understanding on tuning molecular packing and morphology in OSCs. This is essential for unprecedented performance and future large-scale production of organic electronics.NON-TECHNICAL SUMMARY:Solution processing is highly desirable for large-area manufacturing of organic electronic devices. The proposed work will result in a systematic understanding of nucleation and growth in solution processing of organic semiconductors (OSCs). This is crucial for advancing the field of organic electronics, as well as, providing insights for future manufacturing of these devices (e.g. organic light emitting diodes, organic solar cells, transistors and sensors). The PI and student involved will work closely with the Stanford Office of Science Outreach Office to reach out to a broad population ranging from K-12, community college, undergraduate, and graduate students as well as prepare the teachers of tomorrow for new areas of science and technology. This research will expose both graduate students and undergraduates to a broad range of disciplines as well as a wide range of organic electronics technologies. Students will receive training on effective communication, a multidisciplinary approach to problem solving, thus, obtaining an impressive combination of technical engineering, basic scientific understanding, and communication skills. This research is also expected to support the development of interdisciplinary research in the United States and to promote public understanding of the impact of organic electronics on industrial and economic development.
技术摘要: 溶液加工对于有机电子器件的大面积生产来说是非常理想的。在高通量工业制造过程中,溶液薄膜沉积通常在动态结晶状态下进行。由于打印过程中的动力溶剂蒸发、随机成核和流体流动的不稳定性,直接通过溶液打印获得单晶仍然具有挑战性。大多数用于制造单晶的溶液加工技术在缓慢的准平衡条件下运行,使得这些方法不适合工业应用。这些挑战需要对有机半导体(OSC)的溶液结晶工艺有更好的基础了解,以便开发更好的溶液处理方法,用于高性能电子器件的高通量制造。在该项目中,在固态和材料化学项目的支持下,将使用溶液剪切(SS)平台作为模型系统来获得控制晶体成核和分子堆积的方法。将研究从单成核位点控制晶体生长的参数以及获得图案化单晶域的方法。最后,将开发全面的理解和方法,以实现具有所需分子堆积的图案化单晶域。将测量所得薄膜的电荷传输特性,以表征形态和分子堆积对电荷传输的影响。这项工作将加深对调整 OSC 中分子堆积和形态的基本理解。这对于有机电子器件前所未有的性能和未来大规模生产至关重要。非技术摘要:溶液处理对于有机电子器件的大面积制造非常理想。拟议的工作将有助于系统地了解有机半导体(OSC)溶液加工中的成核和生长。这对于推动有机电子领域的发展至关重要,并为这些设备(例如有机发光二极管、有机太阳能电池、晶体管和传感器)的未来制造提供见解。所涉及的 PI 和学生将与斯坦福大学科学外展办公室密切合作,覆盖 K-12、社区学院、本科生和研究生等广泛人群,并为未来的教师进入新的科学领域做好准备和技术。这项研究将使研究生和本科生接触广泛的学科以及广泛的有机电子技术。学生将接受有效沟通、解决问题的多学科方法的培训,从而获得技术工程、基本科学理解和沟通技巧的令人印象深刻的结合。这项研究还有望支持美国跨学科研究的发展,并促进公众了解有机电子对工业和经济发展的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenan Bao其他文献
Biomimetic Sorbents for Selective CO2 Capture Investigators
用于选择性二氧化碳捕获研究人员的仿生吸附剂
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Wilcox;Zhenan Bao;Jiajun He - 通讯作者:
Jiajun He
Rational solvent molecule tuning for high-performance lithium metal battery electrolytes
高性能锂金属电池电解质的合理溶剂分子调节
- DOI:
10.1038/s41560-021-00962-y - 发表时间:
2022-01-01 - 期刊:
- 影响因子:56.7
- 作者:
Zhiao Yu;Paul E. Rudnicki;Zewen Zhang;Zhuojun Huang;Hasan Çelik;Solomon T. Oyakhire;Yuelang Chen;Xian Kong;Sang Cheol Kim;Xin Xiao;Hansen Wang;Yu;G. Kamat;Mun Sek Kim;S. Bent;Jian Qin;Yi Cui;Zhenan Bao - 通讯作者:
Zhenan Bao
Molecular nano-junctions formed with different metallic electrodes
不同金属电极形成的分子纳米结
- DOI:
10.1088/0957-4484/16/4/027 - 发表时间:
2005-04-01 - 期刊:
- 影响因子:3.5
- 作者:
N. Zhitenev;A. Erbe;Zhenan Bao;Weirong Jiang;E. Garfunkel - 通讯作者:
E. Garfunkel
Effect of Spacer Length of Siloxane‐Terminated Side Chains on Charge Transport in Isoindigo‐Based Polymer Semiconductor Thin Films
硅氧烷封端侧链的间隔长度对异靛蓝聚合物半导体薄膜中电荷传输的影响
- DOI:
10.1002/adfm.201500684 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:19
- 作者:
Jianguo Mei;Hung‐Chin Wu;Ying Diao;A. Appleton;Hong Wang;Y. Zhou;Wen;Tadanori Kurosawa;Wen‐Chang Chen;Zhenan Bao - 通讯作者:
Zhenan Bao
Evolution and Interplay of Lithium Metal Interphase Components Revealed by Experimental and Theoretical Studies.
实验和理论研究揭示的锂金属相间成分的演变和相互作用。
- DOI:
10.1021/jacs.3c14232 - 发表时间:
2024-04-17 - 期刊:
- 影响因子:15
- 作者:
Sha Tan;Dacheng Kuai;Zhiao Yu;Saul Perez;Muhammad Mominur Rahman;Kangxuan Xia;Nan Wang;Yuelang Chen;Xiao;Jie Xiao;Jun Liu;Yi Cui;Zhenan Bao;Perla B. Balbuena;Enyuan Hu - 通讯作者:
Enyuan Hu
Zhenan Bao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenan Bao', 18)}}的其他基金
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
- 批准号:
2203318 - 财政年份:2022
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
- 批准号:
2037164 - 财政年份:2020
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health
SenSE:人工智能支持的多模态压力传感,实现精准健康
- 批准号:
2037304 - 财政年份:2020
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
- 批准号:
1434799 - 财政年份:2014
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
- 批准号:
1209468 - 财政年份:2012
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
- 批准号:
1101901 - 财政年份:2012
- 资助金额:
$ 44.15万 - 项目类别:
Continuing Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
- 批准号:
1006989 - 财政年份:2010
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
- 批准号:
0968209 - 财政年份:2010
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
- 批准号:
0901414 - 财政年份:2009
- 资助金额:
$ 44.15万 - 项目类别:
Standard Grant
相似国自然基金
深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
- 批准号:52371282
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
- 批准号:42302189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于端到端协同设计的宽光谱大视场编码掩膜成像方法研究
- 批准号:62305183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大尺寸砷化硼电声输运的缺陷调制机理研究
- 批准号:62304031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于大环AIE配体的币金属簇基MOFs的构筑及分子识别研究
- 批准号:22301283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
大衆長寿・少子社会における「祖父母手帳」分析を通してみる孫育て期待の批判的検討
通过分析高长寿低生育社会的“祖父母笔记本”,审视养育孙子的期望
- 批准号:
24K05562 - 财政年份:2024
- 资助金额:
$ 44.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
- 批准号:
10713928 - 财政年份:2023
- 资助金额:
$ 44.15万 - 项目类别:
An in vitro electrophysiology system for high-throughput measurement of cardiomyocyte action potential
用于高通量测量心肌细胞动作电位的体外电生理系统
- 批准号:
10759677 - 财政年份:2023
- 资助金额:
$ 44.15万 - 项目类别:
Nanosensor Array Platform to Capture Whole Disease Fingerprints
捕获整个疾病指纹的纳米传感器阵列平台
- 批准号:
10660707 - 财政年份:2023
- 资助金额:
$ 44.15万 - 项目类别:
「自己拡大モデル」の批判的検討と当事者性に基づく道徳教育と道徳科授業の構想
批判性审视“自我扩张模式”与所有制德育理念和德育课堂
- 批准号:
23K02116 - 财政年份:2023
- 资助金额:
$ 44.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)