Conductive Metal-Organic Frameworks

导电金属有机框架

基本信息

  • 批准号:
    1309066
  • 负责人:
  • 金额:
    $ 52.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:With the support of the Solid State and Materials Chemistry program in the Division of Materials Research, new synthetic strategies will be developed in pursuit of metal-organic frameworks that exhibit facile ionic and/or electronic charge mobility. The synthetic tunability of metal-organic frameworks is expected to stimulate inquiry into new physical phenomena such as nanometer scale pore confinement effects and framework-centered charge distribution on ion mobility as well as, electron correlation in one-dimensional materials, and the electronic and magnetic properties of low dimensional systems. Such investigations are of immediate interest for their potential battery applications as electrode or solid electrolyte component materials, electrocatalysis, thermoelectric devices and ultra-capacitors. Porous materials with high ion mobility can be prepared by engendering frameworks with delocalized or otherwise inaccessible charges in order to yield uncoordinated and pore-confined single-ion conductors. This will include the preparation of materials containing ionic metal clusters, ionic organic linkers, inclusion of bulky counterions, and characterizing ion mobility trends with respect to ion identity, pore dimensions, pore topography, framework topology, and crystallite morphology. Leveraging the modular nature of metal-organic frameworks in order to include reversible redox couples in both the inorganic and organic components of the material will target new electronically conductive frameworks. Other synthetic strategies not yet developed in this class of materials will also be explored. This will include optimization of electron correlation along one-dimensional chains of metal centers, the inclusion of stable organic radical, and tuning the band structure via ligand functionalization and inclusion of adventitious guest species. Doing so will allow investigation of charge mobility in porous structures from the perspective of fundamental coordination chemistry, a technique commonly reserved only for molecular species. NON-TECHNICAL SUMMARY:Metal-organic frameworks are a new class of solid materials with porous network structures the surfaces of which can be chemically modified to suit a wide range of potential applications, notably gas storage, chemical separations, and catalysis. By adapting these materials to be electrically conductive through the movement of ions and electrons, new phenomena will be explored that are of fundamental interest in chemistry, energy storage, and condensed matter physics. This work will expand the understanding of how to control the formation of new materials and manipulate the electronic and ionic charge transport properties therein. With the support of the Solid State and Materials Chemistry program in the Division of Materials Research, new porous materials will be created of potential interest as component materials in advanced batteries, electrocatalysis, thermoelectric devices, and ultra-capacitors. In doing so, this work will broadly impact these key technologies, resulting in a legacy of new synthetic techniques and a fundamental understanding of conductive materials, while additionally contributing to the education and training of undergraduate, graduate, and postdoctoral students in the synthesis and characterization of new materials. As a related endeavor, the principle investigator will continue to lead an effort in the Department of Chemistry at UC Berkeley to found a materials chemistry major.
技术摘要:在材料研究部固态和材料化学项目的支持下,将开发新的合成策略,以追求具有易于离子和/或电子电荷迁移率的金属有机框架。金属有机骨架的合成可调性有望激发对新物理现象的探究,例如纳米级孔隙限制效应和离子迁移率的骨架中心电荷分布,以及一维材料中的电子相关性以及电子和磁性低维系统的性质。此类研究对于其作为电极或固体电解质成分材料、电催化、热电装置和超级电容器的潜在电池应用具有直接意义。具有高离子迁移率的多孔材料可以通过产生具有离域或其他不可接近的电荷的框架来制备,以产生不协调和孔隙限制的单离子导体。这将包括制备含有离子金属簇、离子有机连接体、包含大体积抗衡离子的材料,以及表征离子身份、孔尺寸、孔形貌、骨架拓扑和微晶形态方面的离子迁移率趋势。利用金属有机框架的模块化性质,在材料的无机和有机成分中包含可逆氧化还原对,将瞄准新的电子导电框架。还将探索此类材料中尚未开发的其他合成策略。这将包括沿着金属中心的一维链优化电子相关性、包含稳定的有机自由基,以及通过配体官能化和包含外来客体物种来调整能带结构。这样做将允许从基本配位化学的角度研究多孔结构中的电荷迁移率,这是一种通常仅适用于分子物种的技术。非技术摘要:金属有机框架是一类具有多孔网络结构的新型固体材料,其表面可以进行化学改性,以适应广泛的潜在应用,特别是气体储存、化学分离和催化。通过离子和电子的运动使这些材料具有导电性,我们将探索化学、能量存储和凝聚态物理中具有根本意义的新现象。这项工作将扩展对如何控制新材料的形成以及操纵其中的电子和离子电荷传输特性的理解。在材料研究部固态和材料化学项目的支持下,将创造出具有潜在兴趣的新型多孔材料,作为先进电池、电催化、热电装置和超级电容器的组成材料。在此过程中,这项工作将广泛影响这些关键技术,产生新的合成技术和对导电材料的基本了解,同时还有助于本科生、研究生和博士后学生在合成和表征方面的教育和培训新材料。作为一项相关的努力,首席研究员将继续领导加州大学伯克利分校化学系建立材料化学专业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Long其他文献

God’s characteristics as reported by near-death experiencers
濒死体验者所报告的上帝特征
  • DOI:
    10.32388/2ti1t7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrizio E. Tressoldi;Jeffrey Long
  • 通讯作者:
    Jeffrey Long
Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past, by David Reich
我们是谁以及我们如何来到这里:古代 DNA 和人类过去的新科学,作者:David Reich

Jeffrey Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Long', 18)}}的其他基金

A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
  • 批准号:
    2350466
  • 财政年份:
    2024
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
CAS: Hard Permanent Magnets Through Molecular Design
CAS:通过分子设计实现硬质永磁体
  • 批准号:
    2206534
  • 财政年份:
    2022
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single- Molecule Magnets
合成单分子磁体的配位化学方法
  • 批准号:
    2102603
  • 财政年份:
    2021
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
  • 批准号:
    1800252
  • 财政年份:
    2018
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
Conductive Metal-Organic Frameworks
导电金属有机框架
  • 批准号:
    1611525
  • 财政年份:
    2016
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
  • 批准号:
    1464841
  • 财政年份:
    2015
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Repression Mediated Embryonic Paterning in Arabidopsis
拟南芥中抑制介导的胚胎模式
  • 批准号:
    1457381
  • 财政年份:
    2015
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
I-Corps: The Commercialization Potential of Pyrazolate Metal-Organic Frameworks (MOFs)
I-Corps:吡唑盐金属有机框架(MOF)的商业化潜力
  • 批准号:
    1508127
  • 财政年份:
    2014
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
  • 批准号:
    1111900
  • 财政年份:
    2011
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Pattern and Process in Human DNA Sequence Variation
人类 DNA 序列变异的模式和过程
  • 批准号:
    0850997
  • 财政年份:
    2009
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant

相似国自然基金

导电金属-有机框架(MOFs)吸波材料的设计合成及性能调控
  • 批准号:
    22375115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
  • 批准号:
    22305211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
导电金属有机框架薄膜的气相沉积与性质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
导电金属有机框架检测贴片对汗液中药物代谢的实时监控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米粒子修饰的导电金属-有机框架化合物的电催化二氧化碳还原性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    258 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302617
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity
导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力
  • 批准号:
    2321365
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Electrically conductive metal-organic frameworks and porous coordination polymers for energy storage
用于储能的导电金属有机框架和多孔配位聚合物
  • 批准号:
    2885358
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Studentship
Conductive Dithiolene-Based Metal Organic Frameworks (MOFs) with Tunable Transport Properties
具有可调传输特性的导电二硫醇烯基金属有机框架 (MOF)
  • 批准号:
    2004868
  • 财政年份:
    2020
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了