Integral Points, Rational Curves and Entire Curves on Projective Varieties

射影簇上的积分点、有理曲线和整曲线

基本信息

  • 批准号:
    1308737
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

The month-long conference, "Rational Points, Rational Curves, and Entire Holomorphic Curves on Varieties", June 3-28, 2013, will be held at the Centre de Recherches Mathematiques in Montreal, Quebec, Canada. The URL for the conference website is as follows.http://www.crm.umontreal.ca/2013/Integral13/index_e.phpThe proposed activity is a summer school of 2-3 weeks comprised of a dozen mini-courses, followed by a week-long international workshop. There have been recent advances in seemingly separate fields: classification of complex projective varieties, existence and properties of solutions of Diophantine equations, and analytic behavior of entire curves in projective varieties. The moment is ripe for a summer school and workshop bringing together experts to synthesize these results, and train junior mathematicians in the new techniques. With the groundwork laid, we will emphasize open problems that seem amenable to solution: the holomorphic Lang conjecture about entire curves in general type varieties, potential density of rational points and rational curves on Calabi-Yau varieties, and the Grothendieck-Katz conjecture on algebraic solutions of differential equations.Systems of polynomial equations arise in all areas of mathematics, as well as areas of science and engineering as disparate as genomics and robot design. The oldest, and still most important, problem in this area is that of finding solutions to polynomial systems, particularly solutions that are fractions of whole numbers. Although surprising, this problem is closely connected to the related problem of interpolating any two given solutions by a system of solutions that are the outputs of a fraction of polynomials, or, more generally, an entire analytic function (the functions most amenable to study via "power series expansion"). There have been recent breakthroughs on both of these problems separately, as well as the interaction between them. This conference will feature training courses for young mathematicians, discussions with experts, and a public outreach lecture, as well as a planned volume to disseminate this work to an even broader audience.
为期一个月的会议,“合理观点,理性曲线和整个品种的全体形态曲线”将于2013年6月3日至28日在加拿大魁北克蒙特利尔的De Rechherches Mathematiques举行。 会议网站的URL如下。在看似独立的领域中,最近的进步已经取得了进步:复杂的投射品种的分类,Diophantine方程解的存在和特性的分类,以及整个曲线曲线的分析行为。 这个时刻已经成熟,暑期学校和研讨会将专家汇集在一起​​,以综合这些结果,并培训初级数学家的新技术。 With the groundwork laid, we will emphasize open problems that seem amenable to solution: the holomorphic Lang conjecture about entire curves in general type varieties, potential density of rational points and rational curves on Calabi-Yau varieties, and the Grothendieck-Katz conjecture on algebraic solutions of differential equations.Systems of polynomial equations arise in all areas of mathematics, as well作为科学和工程领域,就像基因组学和机器人设计一样。 在该领域中,最古老,最重要的问题是找到对多项式系统的解决方案,尤其是解决方案的解决方案。 尽管令人惊讶,但这个问题与通过解决多项式的输出的解决方案系统插值任何两个给定解决方案的相关问题密切相关,或者更普遍地是整个分析功能(通过“功率系列扩展”研究的功能最适合研究)。 最近在这两个问题上都出现了突破,以及它们之间的相互作用。 这次会议将为年轻的数学家提供培训课程,与专家的讨论以及公开展开演讲,以及计划的卷,以向更广泛的受众传播这项工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Starr其他文献

On the asymptotic enumerativity property for Fano manifolds
关于 Fano 流形的渐近枚举性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roya Beheshti;Brian Lehmann;Carl Lian;Eric Riedl;Jason Starr;Sho Tanimoto
  • 通讯作者:
    Sho Tanimoto
Mo1162 GUIDELINE COMPLIANCE AND OUTCOMES OF GENETIC TESTING IN PANCREATIC CANCER PATIENTS
  • DOI:
    10.1016/s0016-5085(23)02804-4
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derk C. Klatte;Heather Hardway;Jason Starr;Douglas L. Riegert-Johnson;Kristin Clift;Thomas Potjer;Jeanin E. Van Hooft;Monique Van Leerdam;Richard J. Presutti;Michael B. Wallace;Yan Bi
  • 通讯作者:
    Yan Bi
Agent-Based Simulation of Social Determinants of Health for Equitable COVID-19 Intervention
基于主体的健康社会决定因素模拟,以实现公平的 COVID-19 干预
Rational curves on hypersurfaces of low degree
低次超曲面上的有理曲线
  • DOI:
    10.1515/crll.2004.045
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joe Harris;Mike Roth;Jason Starr
  • 通讯作者:
    Jason Starr
Cell-Free Tumor DNA Dominant Clone Allele Frequency (DCAF) Is Associated With Poor Outcomes In Advanced Biliary Cancers Treated With Platinum-Based Chemotherapy
无细胞肿瘤 DNA 显性克隆等位基因频率 (DCAF) 与铂类化疗晚期胆道癌的不良结局相关
  • DOI:
    10.1101/2021.11.01.21265773
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    P. U. Uson Junior;U. Majeed;G. Botrus;M. Sonbol;Daniel Ahn;Jason Starr;Jeremy Jones;Hani Babiker;Samantha R. Inabinett;Natasha Wylie;Ashton Boyle;Tanios B. Bekaii;G. Gores;R. Smoot;Michael T. Barrett;B. Nagalo;N. Meurice;Natalie M. Elliott;Joachim L Petit;Yumei Zhou;Mansi Arora;C. Dumbauld;O. Barro;Alexander T. Baker;James M. Bogenberger;Kenneth H. Buetow;Aaron S Mansfield;K. Mody;M. Borad
  • 通讯作者:
    M. Borad

Jason Starr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Starr', 18)}}的其他基金

Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
  • 批准号:
    1937757
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Arithmetic of Rationally Simply Connected Varieties
有理单连通簇的算术
  • 批准号:
    1405709
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
  • 批准号:
    1360586
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
  • 批准号:
    1066154
  • 财政年份:
    2011
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Higher rational connectedness, higher Fano manifolds, and applications
职业:更高的理性连通性、更高的 Fano 流形和应用
  • 批准号:
    0846972
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Higher rational connectedness and applications
更高的理性连接和应用
  • 批准号:
    0758521
  • 财政年份:
    2008
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0734178
  • 财政年份:
    2006
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0553921
  • 财政年份:
    2006
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似国自然基金

靶点介导生物制剂合理化用药的数学建模分析及其应用
  • 批准号:
    12271346
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
靶向FBPase共价变构新位点C128的新型共价抑制剂的合理设计、合成优化及其调控机理的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
靶向FBPase共价变构新位点C128的新型共价抑制剂的合理设计、合成优化及其调控机理的研究
  • 批准号:
    22177036
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目
基于深度学习的新型线粒体复合物II和复合物III双靶点抑制剂的合理设计及杀菌活性研究
  • 批准号:
    21907036
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
HDAC/Nampt双靶点抑制剂的合理设计、合成和抗肿瘤活性研究
  • 批准号:
    81402796
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
  • 批准号:
    2101040
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Between rational and integral points
有理点和积分点之间
  • 批准号:
    EP/P026710/2
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Between rational and integral points
有理点和积分点之间
  • 批准号:
    EP/P026710/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
  • 批准号:
    250196-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
  • 批准号:
    250196-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了