Algebraic Geometry in String Theory
弦论中的代数几何
基本信息
- 批准号:1304962
- 负责人:
- 金额:$ 33.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal explores some of the main research areas where algebraic geometry interacts with quantum field theory and string theory including: the moduli of super Riemann surfaces and the related issues of superstring measure and superstring perturbation theory; the geometric Langlands program; heterotic string phenomenology; F theory; and quantum sheaf cohomology. The proposal also considers some issues in moduli spaces of curves and abelian varieties, and some more exploratory math/physics connections such as amplitudes, Grassmannians, and twistors; and some conjectures regarding the 6-dimensional conformal field theory and its mathematical consequences.The significance of this project is in developing the connections between mathematics (mostly algebraic geometry) and high energy physics (mostly string theory). Each of these areas involves a mixture of issues from math and from physics, and most will be explored in teams involving both mathematicians and physicists. The first research area in particular is expected to have a major impact on the (mathematical) foundations of perturbative superstring theory, while the second addresses one of the major open problems in mathematics using new tools inspired, at least in part, by high energy physics ideas. The PI proposes also to continue a wide range of broad impact community and educational activities, including: the development and guidance of a series of conferences emphasizing the interactions of physics and mathematics, and of other channels for the dissemination of new knowledge concerning interactions of mathematics and high energy physics; curriculum development at the graduate and undergraduate level; writing a strings-for-mathematicians text; extensive work with graduate and undergraduate students and evaluation of the math major at Penn; membership of national bodies such as the AMS Committee on the Profession, and editorship of several journals and book series.This award is co-funded by DMS and PHY.
该提案探讨了代数几何形状与量子场理论和弦理论相互作用的一些主要研究领域,包括:超级黎曼表面的模量以及相关的SuperString Meses and SuperString扰动理论的相关问题;几何兰兰兹计划;杂弦现象学; F理论;和量子捆起来的共同体。该提案还考虑了曲线和阿贝尔品种的模量空间中的一些问题,以及一些更多的探索性数学/物理连接,例如振幅,格拉斯曼尼亚人和扭曲器;以及有关6维综合场理论及其数学后果的一些猜想。该项目的意义在于发展数学(主要是代数几何形状)和高能量物理学(主要是字符串理论)之间的联系。这些领域中的每个领域都涉及数学和物理学中的问题,大多数将在涉及数学家和物理学家的团队中进行探索。特别是第一个研究领域预计将对扰动超弦理论的(数学)基础产生重大影响,而第二个研究领域将使用高能量物理学的想法启发的新工具来解决数学中的主要开放问题之一。 PI还建议继续进行广泛的广泛影响社区和教育活动,包括:一系列会议的发展和指导,强调了物理学和数学的相互作用,以及其他渠道的相互作用,以传播有关数学和高能物理学相互作用的新知识;研究生和本科水平的课程发展;写一本书的弦乐器文字;与研究生和本科生的大量工作以及对宾夕法尼亚大学的数学专业的评估;国家机构的成员,例如AMS专业委员会,以及几个期刊和书籍系列的编辑。该奖项由DMS和PHY共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Donagi其他文献
The Hitchin Image in Type-D
Type-D 中的希钦图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Balasubramanian;Jacques Distler;Ron Donagi;Carlos Perez - 通讯作者:
Carlos Perez
Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties
复曲面簇的切束变形的量子束上同调的物理方面
- DOI:
10.4310/atmp.2013.v17.n6.a2 - 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
Ron Donagi;J. Guffin;Sheldon Katz;Eric Sharpe - 通讯作者:
Eric Sharpe
F-theory vacua with <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math> gauge symmetry
- DOI:
10.1016/j.nuclphysb.2015.07.011 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Mirjam Cvetič;Ron Donagi;Denis Klevers;Hernan Piragua;Maximilian Poretschkin - 通讯作者:
Maximilian Poretschkin
The fibers of the Prym map
Prym 地图的纤维
- DOI:
10.1090/conm/136/1188194 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Ron Donagi - 通讯作者:
Ron Donagi
Ron Donagi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Donagi', 18)}}的其他基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
Research in Mathematical Physics and Algebraic Geometry
数学物理与代数几何研究
- 批准号:
2001673 - 财政年份:2020
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937524 - 财政年份:2019
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
- 批准号:
1603526 - 财政年份:2016
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
String Math Conferences 2014, June 9-13, 2014
2014 年弦数学会议,2014 年 6 月 9-13 日
- 批准号:
1401390 - 财政年份:2014
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
SM: A Conference Series on Mathematical String Theory
SM:数学弦理论会议系列
- 批准号:
0963840 - 财政年份:2010
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Research Proposal in Algebraic Geometry and String Theory
代数几何和弦理论的研究计划
- 批准号:
0908487 - 财政年份:2009
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Research Project in Algebraic Geometry and String Theory
代数几何和弦理论研究项目
- 批准号:
0612992 - 财政年份:2006
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Differential Equations, Algebraic Geometry, and String Theory
职业:微分方程、代数几何和弦理论
- 批准号:
1944952 - 财政年份:2020
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
- 批准号:
1603526 - 财政年份:2016
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
Algebraic Geometry and Moduli Spaces in String Theory
弦论中的代数几何和模空间
- 批准号:
1501612 - 财政年份:2015
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Some problems in Algebraic Geometry and String Theory
代数几何和弦论中的一些问题
- 批准号:
1502170 - 财政年份:2015
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Some problems in algebraic geometry and string theory
代数几何和弦论中的一些问题
- 批准号:
1201089 - 财政年份:2012
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant