Extremal and Probabilistic Combinatorics with Applications
极值和概率组合学及其应用
基本信息
- 批准号:1300547
- 负责人:
- 金额:$ 18.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivated by various problems from other disciplines and also from the internal development of discrete mathematics, the demand steadily increases to understand "optimal" extreme structures and "typical" random structures in discrete mathematics.This project will investigate basic combinatorial questions about structures and will look for various applications of discrete mathematics in computer science, biology, and engineering. The principal investigators build on their previous work in combinatorics and graph theory in the areas of extremal graph, hypergraph and poset theory, graph visualization and graph drawing, random graph models and probabilistic combinatorics to attack fundamental questions in extremal set theory, extremal graph theory, and in areas closely related to them. These fundamental questions include the 70 years old Turan problem, one of the toughest problems in extremal combinatorics; the excluded subposet problems, results on which are just solidifying into a theory; and building a Turan hypergraph theory bridging the two areas above, offering new insight for both. Notwithstanding the efficacy of spectral methods in graphs theory and different analogues of it for hypergraphs, there is not yet a coherent spectral hypergraph theory. Lu and Peng made an attempt to unify different versions of Laplacians for hypergraphs. A key direction of the project is building further the spectral analysis of uniform hypergraphs based on their Laplacian. For 40 years, the Lovasz Local Lemma has been the tool to find the proverbial needle in the haystack. The principal investigators introduced a technique to use the lopsided version of the Lovasz Local Lemma for asymptotic enumeration of combinatorial objects. The project will extend the range of asymptotic enumeration problems where this method applies, by finding new classes of problems where the lopsided Lovasz Local Lemma applies. The study of crossing numbers of graphs, and of the structure of generalized Sperner families is also among the goals of the project.The applied prong of the project is expected to have an impact on other sciences. In particular, investigating models for sequence evolution and phylogeny reconstruction is relevant for the mathematical foundation of bioinformatics, investigating extremal and structural properties of tree indices has relevance for mathematical chemistry, working on crossing numbers of graphs in different models of drawing is relevant for computer science. Some probabilistic and spectral results of this project will be relevant for network science. The principal investigators continue their interdisciplinary collaborations with colleagues from engineering, biology, statistics, and computer science, and continue the training of successful graduate students.
受到其他学科的各种问题以及离散数学的内部发展的推动,需求稳步增加,以了解离散数学中的“最佳”极端结构和“典型”随机结构。本项目将研究有关结构的基本组合问题,并将寻求分散数学在计算机科学,生物学和工具中的各种应用。主要研究人员以其先前在组合图和图理论为基础的工作中,在极端图,超图和POSET理论,图形可视化和图形图,随机图模型和概率组合学方面,以攻击极端集理论,极端图理论以及与之紧密相关的领域中的基本问题。这些基本问题包括70年历史的Turan问题,这是极端组合学中最棘手的问题之一。排除的子框问题,即将巩固为理论的结果。并建立一个Turan Hypergraph理论,桥接了上面的两个领域,为两者提供了新的见解。尽管光谱方法在图理论及其对超图的不同类似物中具有疗效,但尚无连贯的光谱超图理论。 Lu和Peng试图统一不同版本的Laplacians的超图。该项目的一个关键方向是进一步建立基于其拉普拉斯式的统一超图的光谱分析。 40年来,Lovasz Local Lemma一直是在干草堆中找到众所周知的针头的工具。主要研究人员介绍了一种技术,将Lovasz本地引理的偏斜版本用于组合物体的渐近枚举。该项目将通过在适用于Lovasz Loca的Lovasz本地引理中使用新的问题来扩展该方法适用的渐近枚举问题的范围。该项目的目标也是对图形的交叉数量以及广义孢子家族的结构的研究。预计该项目的插脚有望对其他科学产生影响。特别是,研究序列进化和系统发育重建的模型与生物信息学的数学基础有关,研究树指数的极端和结构特性与数学化学相关,在不同模型的图形中进行交叉数量与计算机科学相关。该项目的一些概率和光谱结果将与网络科学有关。首席研究人员继续与工程,生物学,统计和计算机科学的同事进行跨学科的合作,并继续对成功的研究生进行培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laszlo Szekely其他文献
Dilutional and modified ultrafiltration reduces pulmonary hypertension after operations for congenital heart disease: a prospective randomized study.
稀释和改良超滤可降低先天性心脏病手术后的肺动脉高压:一项前瞻性随机研究。
- DOI:
10.1016/s0022-5223(98)70313-7 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Ko Bando;P. Vijay;M. Turrentine;Thomas G. Sharp;Lynda J. Means;Gregory Ensing;B. Lalone;Yasuo Sekine;Laszlo Szekely;John W. Brown - 通讯作者:
John W. Brown
Alternative Surgical Method for Repair of Postinfarctional Left Ventricular Free Wall Ruptur
- DOI:
10.1378/chest.124.4_meetingabstracts.295s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Laszlo Szekely;Laszlo Vandor;Andras Haan;Andrea Varga;Tibor Szonyi;Zsolt Piroth;Ferenc Horkay - 通讯作者:
Ferenc Horkay
Epstein-Barr virus-encoded LMP-1 protein upregulates the pNDCF group of nucleoskeleton-cytoskeleton-associated proteins.
Epstein-Barr 病毒编码的 LMP-1 蛋白上调 pNDCF 组核骨架-细胞骨架相关蛋白。
- DOI:
10.1099/0022-1317-78-8-2031 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
K. Pokrovskaja;Pankaj Trivedi;George Klein;Laszlo Szekely - 通讯作者:
Laszlo Szekely
Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin- associated nuclear bodies.
人类疱疹病毒 8 编码的 LNA-1 在异染色质相关核体中积累。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:3.8
- 作者:
Laszlo Szekely;C. Kiss;K. Mattsson;E. Kashuba;K. Pokrovskaja;Attila Juhasz;Pia Holmvall;George Klein - 通讯作者:
George Klein
Changes of Vasoactive and Inflammatory Factors, Myocardial Injury Markers During and After Cardiopulmonary Bypass and Off-Pump Surgery
- DOI:
10.1378/chest.124.4_meetingabstracts.104s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Laszlo Szekely;Zita Sikos;Beata Soltesz;Matyas Keltai;Ferenc Horkay - 通讯作者:
Ferenc Horkay
Laszlo Szekely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laszlo Szekely', 18)}}的其他基金
CBMS Conference: Additive Combinatorics from a Geometric Viewpoint
CBMS 会议:几何角度的加性组合学
- 批准号:
1743625 - 财政年份:2018
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
Extremal and Probabilistic Combinatorics with Applications
极值和概率组合学及其应用
- 批准号:
1600811 - 财政年份:2016
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
Extremal and Probabilistic Combinatorics II
极值和概率组合学 II
- 批准号:
1000475 - 财政年份:2010
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
Extremal and probabilistic combinatorics
极值和概率组合学
- 批准号:
0701111 - 财政年份:2007
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
相似国自然基金
基于多源勘察数据融合与概率分析的软硬相间地层滑坡演化机理研究
- 批准号:42307257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于概率图模型的载荷共享系统可靠性建模与评估
- 批准号:72371120
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于多场关键信息监测的库岸堆积层滑坡演化动态概率预测
- 批准号:42377180
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
银行经理人激励对影子银行的影响机理与经济后果研究:基于逆概率加权与Q理论的识别策略
- 批准号:72373042
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于多特征挖掘的高超声速目标轨迹概率预测方法研究
- 批准号:12302056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 18.41万 - 项目类别:
Continuing Grant
CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
- 批准号:
2146406 - 财政年份:2022
- 资助金额:
$ 18.41万 - 项目类别:
Continuing Grant
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
- 批准号:
2100157 - 财政年份:2020
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
- 批准号:
20K11668 - 财政年份:2020
- 资助金额:
$ 18.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)