Collaborative Research: Identification of Immunomodulatory Microbiota Metabolites

合作研究:免疫调节微生物代谢物的鉴定

基本信息

  • 批准号:
    1264502
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Lee/Arul1264502/1264526 The overall goal of this research is to identify bioactive metabolites generated by the gut microbiota that impact the inflammation of adipose tissue in obesity. The human gastrointestinal (GI) tract is colonized by hundreds of trillions bacteria belonging to ~1,000 species that are collectively termed the microbiota. Alterations in the microbiota composition and/or function (dysbiosis) are correlated to a growing number of metabolic disorders, including obesity. Chronic, low-grade inflammation of adipose tissue is robustly associated with obesity, and also underlies the development of insulin resistance and the metabolic syndrome. There is growing evidence that gut dysbiosis leads to inflammation in mesenteric adipose tissue. However, the molecular mediators and mechanisms of their actions remain poorly understood. This work hypothesizes that microbiota-derived metabolites are important modulators of host adipose tissue inflammation. Identifying these microbiota metabolites has been extremely difficult, because a majority of the commensal bacteria in the gut are poorly characterized and many of these bacteria cannot be grown in culture. As microbes are capable of performing metabolic reactions not available to the host, and metabolites synthesized by one species can be further modified by another species, the biotransformation space accessible to the microbiota is vast. To overcome these challenges, this project investigates a novel bioinformatics-metabolomics approach enabling focused and quantitative exploration of gut microbiota metabolites. The results of the bioinformatics and metabolomics analyses will be used to establish a physiological basis for in vitro experiments on the mechanisms whereby microbiota metabolites influence adipose tissue inflammation in obesity. The expected outcome of this project is to identify specific metabolites that can be unequivocally sourced to the gut microbiota and are present in host adipose tissue, and to determine their immunomodulatory properties in the context of adipose tissue inflammation in obesity. Broader Impact This research is novel in that few studies have explored the role for microbiota metabolites in the development of chronic body fat inflammation in obesity. The proposed work will identify and quantify bacterial metabolites whose levels may be altered under conditions of obesity and influence the state of inflammation. This research has transformative potential, both methodologically as well as discovery-wise. The proposed experiments could pave the way for a general methodology for measuring bioactive chemicals that are naturally present in the body, but are produced by bacteria, rather than the body. The discovery of naturally resident bacterial metabolites with anti-inflammatory properties could lead to new, safe treatment modalities for obesity as an inflammatory disease.The proposed project is highly interdisciplinary, and provides a unique opportunity to train students in cutting-edge research at the interface of several different fields in engineering and life science. To create research opportunities for underrepresented minorities, the proposal includes a plan for a joint summer internship program. Two minority students from Texas A&M will be recruited each year to intern in the lead investigator's laboratory at Tufts. In addition, the investigators will integrate the proposed research into ongoing educational and outreach efforts at their respective institutions by recruiting undergraduate students to participate in open-ended projects from the proposed work and incorporating the methodologies and findings into existing courses in Metabolic Engineering and Systems Biology.Due to the interdisciplinary nature of the project, this award by the Biotechnology, Biochemical, and Biomass Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
Lee/Arul1264502/1264526 这项研究的总体目标是确定肠道微生物群产生的生物活性代谢物,这些代谢物会影响肥胖症中脂肪组织的炎症。人类胃肠道 (GI) 栖息着数百万亿个细菌,这些细菌分属约 1,000 个物种,统称为微生物群。微生物群组成和/或功能的改变(生态失调)与越来越多的代谢性疾病(包括肥胖症)相关。脂肪组织的慢性、低度炎症与肥胖密切相关,也是胰岛素抵抗和代谢综合征发生的基础。越来越多的证据表明肠道菌群失调会导致肠系膜脂肪组织炎症。然而,人们对分子介质及其作用机制仍知之甚少。这项工作假设微生物群衍生的代谢物是宿主脂肪组织炎症的重要调节剂。识别这些微生物代谢物非常困难,因为肠道中大多数共生细菌的特征很差,而且其中许多细菌无法在培养物中生长。由于微生物能够进行宿主无法进行的代谢反应,并且一个物种合成的代谢物可以被另一物种进一步修饰,因此微生物群可利用的生物转化空间是巨大的。为了克服这些挑战,该项目研究了一种新颖的生物信息学-代谢组学方法,能够对肠道微生物代谢物进行集中和定量的探索。生物信息学和代谢组学分析的结果将用于为微生物代谢物影响肥胖症脂肪组织炎症机制的体外实验建立生理学基础。该项目的预期结果是确定可明确来源于肠道微生物群并存在于宿主脂肪组织中的特定代谢物,并确定它们在肥胖症脂肪组织炎症背景下的免疫调节特性。更广泛的影响 这项研究的新颖之处在于,很少有研究探讨微生物群代谢物在肥胖症慢性身体脂肪炎症发展中的作用。拟议的工作将识别和量化细菌代谢物,这些代谢物的水平可能在肥胖条件下发生改变并影响炎症状态。这项研究在方法论和发现方面都具有变革潜力。拟议的实验可以为测量体内自然存在但由细菌而不是人体产生的生物活性化学物质的通用方法铺平道路。具有抗炎特性的自然驻留细菌代谢物的发现可能会为肥胖这种炎症性疾病带来新的、安全的治疗方式。拟议的项目是高度跨学科的,并为培训学生进行前沿研究提供了独特的机会工程和生命科学的几个不同领域。为了为代表性不足的少数群体创造研究机会,该提案包括一项联合暑期实习计划。每年都会招募两名来自德克萨斯农工大学的少数族裔学生到塔夫茨大学首席研究员实验室实习。此外,研究人员将通过招募本科生参加拟议工作的开放式项目,并将方法和研究结果纳入代谢工程和系统生物学的现有课程,将拟议的研究纳入各自机构正在进行的教育和推广工作由于该项目的跨学科性质,该奖项由CBET部门的生物技术、生物化学和生物质工程项目与分子和细胞生物学部门的系统和合成生物学项目共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyongbum Lee其他文献

Tissue, cell and engineering.
组织、细胞和工程。
  • DOI:
    10.1016/j.copbio.2013.08.001
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Kyongbum Lee;J. Hubbell
  • 通讯作者:
    J. Hubbell
Tissue Engineering I
组织工程我
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyongbum Lee;D. Kaplan
  • 通讯作者:
    D. Kaplan
Quantification of Adipocytes Development in a Micro-Fluidic Reactor, Using 2-Photon Fluorescence Microscopy Imaging
使用 2 光子荧光显微镜成像定量微流体反应器中的脂肪细胞发育
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikolaos Fourligas;Ning Lai;William Rice;Kyongbum Lee;I. Georgakoudi
  • 通讯作者:
    I. Georgakoudi
IWBDA 2009 International Workshop on Bio-Design Automation
IWBDA 2009生物设计自动化国际研讨会
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Densmore;Marc D. Riedel;S. Hassoun;Adam Shea;Brian Fett;K. Parhi;Ehasn Ullah;Kyongbum Lee;Chris Winstead;Chris J. Myers;Vassilis Sotiropoulos;Jonathan R. Tomshine;Katherine Volzing;Poonam Srivastava;Y. Kaznessis;Howard Salis;Ethan Mirsky;Christopher Voigt;S. Bagh;Mahuya Mandal;David McMillen;Bing Xia;J. Kittleson;Timothy Ham;J. C. Anderson;Sherief Reda;P. J. Steiner;M. Galdzicki;Deepak Chandran;Herbert M. Sauro;Daniel Cook;J. Gennari;Tsung;Tsung;S. Hamada;Satoshi Murata;Giuseppe Nicosia;Ron Weiss
  • 通讯作者:
    Ron Weiss
Sequential Parameter Estimation for Mammalian Cell Model Based on In Silico Design of Experiments
基于计算机实验设计的哺乳动物细胞模型的顺序参数估计
  • DOI:
    10.3390/pr6080100
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Zhenyu Wang;Hana Sheikh;Kyongbum Lee;C. Georgakis
  • 通讯作者:
    C. Georgakis

Kyongbum Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyongbum Lee', 18)}}的其他基金

REU Site: Enabling Analysis and Design of Complex Biological Systems through Data Science
REU 网站:通过数据科学实现复杂生物系统的分析和设计
  • 批准号:
    1560388
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Quadrupole Time-of-Flight Mass Spectrometer for Proteomics and Metabolomics
MRI:购买用于蛋白质组学和代谢组学的四极杆飞行时间质谱仪
  • 批准号:
    1337760
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an LC-MS Facility for Research and Education in Metabolic Systems Biology
MRI:收购 LC-MS 设施用于代谢系统生物学的研究和教育
  • 批准号:
    0821381
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Real-time Profiling of regulatory molecule network in adipocytes
合作研究:脂肪细胞中调节分子网络的实时分析
  • 批准号:
    0651963
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

建立单链DNA连接靶向双组学测序技术用于肺结节良恶性鉴别诊断的研究
  • 批准号:
    82302652
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子级联激光吸收光谱协同激光诱导击穿光谱的蜂蜜真伪原位同步快速鉴别方法研究
  • 批准号:
    32302212
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
免扩增核酸定量检测技术研究及其在发热儿童细菌与病毒性感染快速鉴别中的应用
  • 批准号:
    22304040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于TLC铝箔电导辅助激光蒸发电离质谱的山茶油真实性快速鉴别机制研究
  • 批准号:
    32302223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于植物源与动物源特征性成分相互作用的蜂蜜真实性鉴别研究
  • 批准号:
    32372428
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Identification of allosteric molecules for DOR-KOR heteromer-mediated peripheral analgesia
DOR-KOR 异聚体介导的外周镇痛变构分子的鉴定
  • 批准号:
    10608439
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Targeting microglial cell iron-handling in Alzheimer’s Disease
靶向阿尔茨海默病中的小胶质细胞铁处理
  • 批准号:
    10603992
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
  • 批准号:
    10696753
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Early Neurodevelopmental Trajectories of Typical and Atypical Language Acquisition
典型和非典型语言习得的早期神经发育轨迹
  • 批准号:
    10607353
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了