Regularity and stability results in variational problems
规律性和稳定性导致变分问题
基本信息
- 批准号:1262411
- 负责人:
- 金额:$ 50.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematics research project by Alessio Figalli is focused on several problems in the calculus of variations and partial differential equations. These include the optimal transport problem, the issue of stability in functional inequalities, and the Mumford-Shah functional. The optimal transport problem consists of finding the least expensive way to transport a distribution of mass from one place to another. In addition to being a natural problem in the calculus of variations, it is also related to partial differential equations, Riemannian geometry, and probability. The issue of stability in functional inequalities consists of understanding whether a minimizer of some inequality is stable in some suitable sense. This is an important issue in order to understand and/or predict the evolution in time of a physical phenomenon. For instance, quantitative stability results are used to quantify the rate of convergence of a given physical system to its steady state, and they can also be used to understand the extent to which the system changes under the influence of external factors (for instance, external forces). The Mumford-Shah functional is a classical model in image segmentation which is used to extract from a blurry image the meaningful discontinuities (which correspond to edges of objects, shadows, and overlapping objects). The regularity properties of minimizers of the Mumford-Shah functional are still far from being understood, and understanding the smoothness of the interfaces and their topological properties is an important and challenging problem.All the problems investigated in this mathematics research project by Alessio Figalli have important applications in other areas of sciences. For instance, the optimal transport problem is a fundamental problem in economics, with further applications to meteorology, biology, and population dynamics; the Mumford-Shah functional, which is studied in this project, has applications to image processing (it allows to extract good images out of blurry ones). Some of the problems in this project will be used in the training of undergraduate students, graduate students and postdoctoral fellows. Several of Figalli's PhD students and postdoctoral fellows will engage in research in these areas, and the results obtained will be widely disseminated via the publication of research papers and lecture notes, as well as through the development of courses and seminars.
Alessio Figalli的该数学研究项目集中在变化和部分微分方程的计算中的几个问题上。这些包括最佳运输问题,功能不平等的稳定性问题以及芒福德 - 夏(Mumford-Shah)功能。最佳运输问题包括找到最便宜的方式将质量分布从一个地方传输到另一个地方。除了在变化的计算中是自然问题外,它还与部分微分方程,riemannian几何形状和概率有关。功能不平等的稳定性问题包括了解某些不平等的最小化在某种程度上是否稳定。这是一个重要的问题,以理解和/或预测物理现象的演变。例如,定量稳定性结果用于量化给定物理系统对其稳态的收敛速率,并且它们也可以用来了解系统在外部因素影响下(例如,外部力量)下发生变化的程度。 Mumford-Shah功能是图像分割中的经典模型,用于从模糊图像中提取有意义的不连续性(对应于对象,阴影和重叠对象的边缘)。 Mumford-Shah功能的最小化器的规律性尚未被理解,并且了解界面及其拓扑特性的平稳性是一个重要且具有挑战性的问题。Alessio Figalli在此数学研究项目中研究的所有问题在其他科学领域都具有重要的应用。例如,最佳运输问题是经济学中的一个基本问题,并在气象,生物学和人群动态中进一步应用。在该项目中研究的Mumford-Shah功能具有用于图像处理的应用(它允许从模糊的图像中提取良好的图像)。 该项目中的一些问题将用于培训本科生,研究生和博士后研究员。 Figalli的一些博士学位学生和博士后研究员将在这些领域进行研究,并且获得的结果将通过研究论文和讲义的发表以及课程和研讨会的开发来广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Maggi其他文献
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Augello;V. Santinelli;G. Vicedomini;P. Mazzone;S. Gulletta;Francesco Maggi;Y. Mika;G. Chierchia;C. Pappone - 通讯作者:
C. Pappone
Francesco Maggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Maggi', 18)}}的其他基金
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
- 批准号:
2247544 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
- 批准号:
2000034 - 财政年份:2020
- 资助金额:
$ 50.91万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854344 - 财政年份:2019
- 资助金额:
$ 50.91万 - 项目类别:
Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
- 批准号:
1840314 - 财政年份:2019
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
- 批准号:
1565354 - 财政年份:2017
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361122 - 财政年份:2014
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
相似国自然基金
面向安全稳定生产的风电智能预测预警机制研究
- 批准号:62366039
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
神经干细胞外泌体传递YBX1调控ANXA2稳定性缓解脑缺血再灌注损伤机制研究
- 批准号:82360386
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
BCLAF1通过YTHDF2调控RNA稳定性促进食管鳞癌代谢重编程的机制研究
- 批准号:82372680
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
稳定共轭二并与三并莫比乌斯结构的精准构筑与性质研究
- 批准号:22371243
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
利用油菜-菘蓝附加系解析板蓝根药用活性成分及遗传稳定的抗病毒油菜创制
- 批准号:32372088
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
- 批准号:
10614928 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Stem cell-loaded microgels to treat discogenic low back pain
装载干细胞的微凝胶可治疗椎间盘源性腰痛
- 批准号:
10398627 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
- 批准号:
10380567 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
- 批准号:
RGPIN-2017-04215 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Discovery Grants Program - Individual
OUTLAST - A First Multiple-Dose Efficacy Study of IXT-m200, an anti-METH Monoclonal Antibody, in Patients with METH Use Disorder
OUTLAST - IXT-m200(一种抗冰毒单克隆抗体)在冰毒使用障碍患者中的首次多剂量疗效研究
- 批准号:
10399794 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别: