CAREER: Quantum Information Science with Single Defects in ZnO

职业:ZnO 单一缺陷的量子信息科学

基本信息

  • 批准号:
    1254530
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Technical Description: The research aim of this CAREER project is to understand the photo-physics and spin-physics of single point defects in ZnO as a platform for quantum information science and quantum-enhanced metrology. While quantum information science promises fundamentally new technological capabilities, implementation of these theoretical ideas in a physical system is very challenging. Single point defects in semiconductor crystals are promising quantum systems with potential for scalability through integration with conventional computing technology and other quantum systems. This research project studies point defects in ZnO using a "single-molecule" approach, combining confocal fluorescence microscopy, time-resolved single-photon counting, and magnetic resonance to understand the structure and dynamics of this individually addressable quantum system. Emphasis is on understanding spin and photo dynamics with an eye toward controlling the quantum states of electronic and nuclear spins, and on the generation of high-quality single photon sources. In addition, ZnO growth is studied, both in the principle investigator's laboratory and through collaboration, to understand and control the formation of defects and how they interact with the electronic and photonic properties of ZnO.Non-technical Description: This project examines the optical and magnetic behavior of single atom-scale defects. An example is a single missing atom within the array of atoms that form a crystal. Such defects can behave like single atoms, even at room temperature, within a solid-state environment. Understanding and controlling these point defects could lead to new technology for computing and communication because their behavior is governed by quantum mechanics. The research team studies a single defect through its optical signature by detecting the individual photons it emits under different experimental conditions and in samples grown using different methods. Graduate and undergraduate students working on this project benefit from research experience in a stimulating and interdisciplinary environment. The principal investigator (PI) also develops hands-on science lessons, including equipment and supplies that may be borrowed by teachers through the Cornell Center for Materials Research lending library. The PI works with teachers on the development of these kits, and brings teachers into the laboratory so they can experience scientific research and share it with their students.
技术描述:该职业项目的研究目的是了解 ZnO 中单点缺陷的光物理和自旋物理,作为量子信息科学和量子增强计量学的平台。虽然量子信息科学有望带来全新的技术能力,但在物理系统中实现这些理论思想非常具有挑战性。半导体晶体中的单点缺陷是有前途的量子系统,通过与传统计算技术和其他量子系统的集成,具有可扩展性的潜力。该研究项目采用“单分子”方法研究 ZnO 中的点缺陷,结合共焦荧光显微镜、时间分辨单光子计数和磁共振,以了解这种可单独寻址的量子系统的结构和动力学。重点是理解自旋和光动力学,着眼于控制电子和核自旋的量子态,以及高质量单光子源的生成。此外,在主要研究者的实验室中并通过合作研究了 ZnO 生长,以了解和控制缺陷的形成以及它们如何与 ZnO 的电子和光子特性相互作用。非技术描述:该项目研究了光学和光子特性。单原子尺度缺陷的磁性行为。一个例子是形成晶体的原子阵列中缺少一个原子。即使在室温下,在固态环境中,此类缺陷也可以表现得像单个原子。理解和控制这些点缺陷可能会带来计算和通信新技术,因为它们的行为受到量子力学的控制。研究小组通过检测单个缺陷在不同实验条件下和使用不同方法生长的样品中发出的单个光子,通过其光学特征来研究单个缺陷。从事该项目的研究生和本科生受益于刺激的跨学科环境中的研究经验。首席研究员 (PI) 还开发实践科学课程,包括教师可以通过康奈尔材料研究中心借阅图书馆借用的设备和用品。 PI 与教师合作开发这些套件,并将教师带入实验室,让他们体验科学研究并与学生分享。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Fuchs其他文献

A Viewpoint on: Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV Center in Diamond
观点:利用钻石 NV 中心在环境条件下纳米级检测单个基本电荷
  • DOI:
    10.1039/c4cc01899k
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Gregory Fuchs;Published March;F. Dolde;M. Doherty;J. Michl;I. Jakobi;B. Naydenov;S. Pezzagna;J. Meijer;P. Neumann;F. Jelezko;N. Manson;J. Wrachtrup
  • 通讯作者:
    J. Wrachtrup
Sitting in our own soup? Combined sewers, climate change and NATURE-BASED SOLUTIONS FOR urban water MANAGEMENT in Berlin
坐在我们自己的汤里?
  • DOI:
    10.1016/j.nbsj.2024.100113
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Wild;Gregory Fuchs;McKenna Davis
  • 通讯作者:
    McKenna Davis

Gregory Fuchs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Fuchs', 18)}}的其他基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Understanding antiferromagnetic spin-orbit heterostructures with a single-spin microscope
用单自旋显微镜了解反铁磁自旋轨道异质结构
  • 批准号:
    2004466
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Current-driven magnetic sources at microwave frequency
微波频率电流驱动磁源
  • 批准号:
    1708016
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
REU/RET Site: Interdisciplinary Research Experience for Undergraduates (REU) and Teachers (RET) in Materials
REU/RET 网站:材料领域本科生 (REU) 和教师 (RET) 的跨学科研究经验
  • 批准号:
    1460428
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超导电路晶格系统拓扑量子信息处理的研究
  • 批准号:
    12375020
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子时空性质和黑洞信息丢失问题的研究
  • 批准号:
    12375057
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于证据理论和量子决策的多源信息融合研究
  • 批准号:
    62303382
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多光子关联与干涉及其在量子信息中的应用
  • 批准号:
    12304397
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
  • 批准号:
    2333073
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
  • 批准号:
    2333074
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Pivots: Creating a Pathway to a Career in Quantum Information Science and Technology
支点:开辟量子信息科学与技术职业之路
  • 批准号:
    2321413
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Cooperative Agreement
CAREER: Tunable superconductor materials for quantum information processing using pairs of Majorana zero modes
职业:使用马约拉纳零模式对进行量子信息处理的可调谐超导材料
  • 批准号:
    2046648
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了