Making Math Tutors More Engaging and Effective through Interaction Design Patterns and Educational Data Mining
通过交互设计模式和教育数据挖掘使数学导师更具吸引力和效率
基本信息
- 批准号:1252297
- 负责人:
- 金额:$ 148.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops and validates interaction design patterns, structured definitions of high-quality design solutions that can be applied at scale, that can be used to design more effective and engaging online mathematics problems. This research is conducted in the context of ASSISTments, free online mathematics software used by middle school students nationwide. The patterns are designed using data from 20,000 mathematics problems previously used by thousands of students (generating millions of data points), and validated through a set of forty small-scale randomized controlled trials conducted via automated experimentation, conducted online in American classrooms nationwide. The project is a partnership among Teachers College, Columbia University, Carnegie Mellon University, and Worcester Polytechnic Institute. The project makes two types of contributions. The first is are basic discoveries as to which types of content lead to the best learning and engagement in online problem-solving. The second is a set of guidelines for the design of online learning that can be applied by teachers and other content creators to produce educationally effective and engaging online mathematics problems.The project is accomplishing these goals using the following procedure. First, they are studying the design features present in existing ASSISTments mathematics problems, by hand-labeling design features on a small sub-set of problems and then using educational data mining to replicate the hand-labels at scale. These design features include features relevant to interface design, domain content, and pedagogical strategies. They then apply previously developed and validated automated detectors of student learning, engagement, and affect to log files of students solving mathematics problems in ASSISTments. They use association rule mining to determine which combinations of design features lead to better learning, engagement, and affect, and build on these findings to develop interaction design patterns that communicate effective solutions which combine these data features. The design patterns are validated through a set of forty small-scale randomized controlled trials conducted via automated experimentation, where forty mathematics problems are improved using the design patterns. Each improved problem is studied in a random sample of 200 students (drawn from the full population of students currently using ASSISTments as part of their regular curriculum), who receive the problem as part of their regular classroom activities. They statistically assess the impact of these modified problems on learning and engagement using the outputs of automated detectors as dependent measures. This project results in increasing the effectiveness and engagingness of the mathematics problems in the ASSISTments system, and identifies design patterns that can be applied to improve all of the content in ASSISTments. 50,000 students a year use the ASSISTments system, including large numbers of students from traditionally under-represented populations. More broadly, the proposed project is producin a generalizable and precise approach for the creation of more effective and engaging online learning. The design patterns developed are likely to be useful for improving the design of the range of online problem-solving systems used increasingly in American mathematics education.
该项目开发并验证了交互设计模式,可以大规模应用的高质量设计解决方案的结构化定义,这些定义可用于设计更有效和引人入胜的在线数学问题。这项研究是在全国初中学生使用的辅助工具,免费的在线数学软件的背景下进行的。这些模式是使用来自数千名学生(生成数百万个数据点)先前使用的20,000个数学问题的数据设计的,并通过在全国范围内在美国教室在线进行的四十组小规模的随机对照试验进行了验证。该项目是教师学院,哥伦比亚大学,卡内基·梅隆大学和伍斯特理工学院的合作伙伴关系。该项目做出了两种类型的贡献。首先是关于哪种类型的内容导致在线解决问题的最佳学习和参与度的基本发现。第二个是一套在线学习设计的指南,教师和其他内容创建者可以应用,以产生有效且引人入胜的在线数学问题。该项目正在使用以下程序实现这些目标。首先,他们正在研究现有辅助数学问题中存在的设计功能,通过一小部分问题的手工标记设计功能,然后使用教育数据挖掘来大规模复制手工标签。这些设计功能包括与界面设计,域内容和教学策略相关的功能。然后,他们应用了先前开发并验证的学生学习,参与度和影响力的自动检测器,以在辅助中解决数学问题的学生文件的日志文件。他们使用关联规则挖掘来确定设计功能的哪些组合可以提高更好的学习,参与和影响,并以这些发现为基础,以开发互动设计模式,以传达结合这些数据功能的有效解决方案。设计模式通过通过自动实验进行的40组随机对照试验进行了验证,其中使用设计模式改善了40个数学问题。在200名学生的随机样本中研究了每个改进的问题(从当前使用助理作为常规课程的一部分的学生人群中汲取),他们将问题作为常规课堂活动的一部分。他们从统计上评估了这些修改后的问题对学习和参与的影响,使用自动检测器的输出作为依赖措施。该项目导致辅助系统中数学问题的有效性和引人入胜,并确定可用于改善辅助中所有内容的设计模式。每年有50,000名学生使用辅助系统,其中包括来自传统代表性不足的人群的大量学生。更广泛地说,拟议的项目是一种可创建更有效和引人入胜的在线学习的可普遍和精确的方法。开发的设计模式可能有助于改善美国数学教育中越来越多地使用的在线问题解决系统的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Baker其他文献
Brillouin spectroscopy reveals changes in muscular viscoelasticity in Drosophila POMT mutants
布里渊光谱揭示果蝇 POMT 突变体肌肉粘弹性的变化
- DOI:
10.1117/12.2079681 - 发表时间:
2015 - 期刊:
- 影响因子:1.9
- 作者:
Zhaokai Meng;Ryan Baker;V. Panin;V. Yakovlev - 通讯作者:
V. Yakovlev
Exploring the Impact of Voluntary Practice and Procrastination in an Introductory Programming Course
探索编程入门课程中自愿实践和拖延的影响
- DOI:
10.1145/3478431.3499350 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jiayi Zhang;T. Cunningham;Rashmi Iyer;Ryan Baker;Eric Fouh - 通讯作者:
Eric Fouh
Differential Susceptibility of Normal and Transformed Human Leukocytes to Hydrolytic Attack by Secretory Phospholipase A<sub>2</sub>
- DOI:
10.1016/j.bpj.2009.12.2532 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Lynn Anderson;Kelly Damm;Ryan Baker;Joseph Chen;Amy Hamaker;Izadora Izidoro;Eric Moss;Mikayla Orton;Kristin Papworth;Lyndee Sherman;Evan Stevens;Celestine Yeung;Jennifer Nelson;Allan M. Judd;John D. Bell - 通讯作者:
John D. Bell
How Reliable is a J-sign Severity Scale When Assessing Lateral Patellar Instability?
在评估外侧髌骨不稳定性时,J 征严重程度有多可靠?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Oksana Klimenko;T. Sousa;Ryan Baker;J. Carl;S. Mader;Kristopher Holden;M. McMulkin - 通讯作者:
M. McMulkin
Clinical Investigation : Thoracic Cancer Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence on Dose Calculation Algorithm
临床调查:对 201 名接受立体定向消融放射治疗的非小细胞肺癌患者进行的胸部癌研究显示局部控制对剂量计算算法的依赖性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
K. Latifi;Jasmine Oliver;Ryan Baker;T. Dilling;Craig W. Stevens;Jongphil Kim;Binglin Yue;M. Demarco;Geoffrey Zhang;Eduardo G. Moros;V. Feygelman - 通讯作者:
V. Feygelman
Ryan Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Baker', 18)}}的其他基金
Broadening the Use of Learning Analytics in STEM Education Research
扩大学习分析在 STEM 教育研究中的应用
- 批准号:
2321129 - 财政年份:2023
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
Collaborative Research: CueLearn: Enhancing Social Problem Solving through Intelligent Support
协作研究:CueLearn:通过智能支持增强社会问题解决能力
- 批准号:
2300829 - 财政年份:2023
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201798 - 财政年份:2022
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
Conference: Transforming Educational Technology Through Convergence
会议:通过融合改变教育技术
- 批准号:
2231524 - 财政年份:2022
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
Collaborative Research: Student Affect Detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
- 批准号:
1917545 - 财政年份:2019
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
- 批准号:
1931419 - 财政年份:2019
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
Collaborative Research: Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences
合作研究:开发一款在线游戏来教授中学生生命科学领域的科学研究实践
- 批准号:
1907437 - 财政年份:2019
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
Collaborative Research: Using Educational Data Mining Techniques to Uncover How and Why Students Learn from Erroneous Examples
协作研究:使用教育数据挖掘技术揭示学生如何以及为何从错误示例中学习
- 批准号:
1661153 - 财政年份:2017
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
BD Spokes: Spoke: NORTHEAST: Collaborative: Grand Challenges for Data-Driven Education
BD 发言人: 发言人:东北:协作:数据驱动教育的巨大挑战
- 批准号:
1636851 - 财政年份:2016
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
BD Spokes: Spoke: NORTHEAST: Collaborative: Grand Challenges for Data-Driven Education
BD 发言人: 发言人:东北:协作:数据驱动教育的巨大挑战
- 批准号:
1661987 - 财政年份:2016
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
相似国自然基金
统计力学中的数学物理方程
- 批准号:12371218
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
热辐射影响的可压缩流体模型的数学问题研究
- 批准号:12371222
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于数学模型的媒介寄主选择偏好在柑橘黄龙病传播中的作用揭示
- 批准号:12361097
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
- 批准号:82360769
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
具有多平衡态的两类生物数学模型的极限环分岔及其应用
- 批准号:12301215
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
- 批准号:
2349611 - 财政年份:2024
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
Understanding Teacher Effectiveness and Retention Among Single Subject Math Program Completers in the First Five Years of Teaching
了解教师在教学前五年的效率和单科数学课程完成者的保留率
- 批准号:
2345187 - 财政年份:2024
- 资助金额:
$ 148.09万 - 项目类别:
Continuing Grant
The 2024 Gulf States Math Alliance Conference and Faculty Development Workshop
2024年海湾国家数学联盟会议暨教师发展研讨会
- 批准号:
2402471 - 财政年份:2024
- 资助金额:
$ 148.09万 - 项目类别:
Standard Grant
地球流体力学および磁気流体力学の基礎方程式に対する数理解析
地球流体动力学和磁流体动力学基本方程的数学分析
- 批准号:
24KJ0138 - 财政年份:2024
- 资助金额:
$ 148.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
メタ文法規則の導出による数理言語学基盤の構築
通过推导元语法规则为数学语言学奠定基础
- 批准号:
23K21706 - 财政年份:2024
- 资助金额:
$ 148.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)