Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
基本信息
- 批准号:1236969
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposed research focuses on several basic problems related to the geometry of complex and symplectic manifolds, which can be studied using nonlinear PDEs. In the first project the PI will study a recent conjecture of Donaldson that aims at extending Yau's theorem in Kahler geometry to symplectic four-manifolds, building on his work with Weinkove and Yau. If proved, this conjecture would provide a powerful new tool to construct symplectic forms on compact symplectic four-manifolds, and would have striking applications to symplectic topology. The second project regards the geometry of compact Calabi-Yau manifolds, and specifically the way in which Ricci-flat Kahler metrics on a Calabi-Yau manifold can degenerate when their cohomology class approaches the boundary of the Kahler cone. These degenerations have also been studied by string theorists in connection with mirror symmetry. The PI proposes to continue his study of these degenerations, as well as investigating Ricci-flat metrics on a family of quintic threefolds near a large complex structure limit. The third project falls in the area of canonical metrics on compact Kahler manifolds, such as Kahler-Einstein or constant scalar curvature Kahler metrics. It is believed that the existence of such canonical metrics should be equivalent to the algebraic stability of the manifold. The PI will study this using two natural evolution equations associated to these problems, the Kahler-Ricci flow and the Calabi flow, with the aim of connecting the limiting behaviour of the flows to algebraic stability through the use of natural energy functionals. The final project also involves canonical Kahler metrics, and more specifically the problem of existence of constant scalar curvature Kahler metrics on complex surfaces with ample canonical bundle in cohomology classes that are known to be stable.Most of the problems that we will consider, for example the Einstein equations, were originally discovered by physicists who were searching for models of the fundamental laws of nature. More recently, geometric aspects closely related to the proposed research have found applications in high energy physics, and are being used to deepen our understanding of the Universe and of elementary particles. The geometric ideas of the PI's research revolve around the problem of finding the optimal shape of a geometric space, the one with the largest possible symmetry, and understanding the possible singularities that form in spaces where such an optimal shape does not exist. Any progress on these questions will not only shed some light on some basic problems in mathematics, but will also have applications in physics and other sciences.
PI 提出的研究重点是与复辛流形几何相关的几个基本问题,这些问题可以使用非线性偏微分方程来研究。在第一个项目中,PI 将研究唐纳森最近的猜想,该猜想旨在以他与 Weinkove 和丘的合作为基础,将卡勒几何中的丘定理扩展到辛四流形。如果得到证实,这个猜想将为在紧辛四流形上构造辛形式提供一个强大的新工具,并将在辛拓扑中有惊人的应用。第二个项目涉及紧致卡拉比-丘流形的几何形状,特别是卡拉比-丘流形上的里奇平坦卡勒度量在其上同调类接近卡勒锥体边界时退化的方式。弦理论家也结合镜像对称性对这些简并进行了研究。 PI 建议继续研究这些退化,并研究接近大型复杂结构极限的五次三重族的 Ricci 平坦度量。第三个项目属于紧凑卡勒流形的规范度量领域,例如卡勒-爱因斯坦或恒定标量曲率卡勒度量。人们认为这种规范度量的存在应该等价于流形的代数稳定性。 PI 将使用与这些问题相关的两个自然演化方程(Kahler-Ricci 流和 Calabi 流)来研究这一问题,目的是通过使用自然能量泛函将流的极限行为与代数稳定性联系起来。最终项目还涉及规范卡勒度量,更具体地说,涉及已知稳定的上同调类中具有充足规范束的复杂表面上恒定标量曲率卡勒度量的存在问题。例如,我们将考虑的大多数问题爱因斯坦方程最初是由寻找自然基本定律模型的物理学家发现的。最近,与所提出的研究密切相关的几何方面已经在高能物理学中得到应用,并被用来加深我们对宇宙和基本粒子的理解。 PI 研究的几何思想围绕着寻找几何空间的最佳形状(具有最大可能对称性的形状)的问题,并了解在不存在这种最佳形状的空间中可能形成的奇点。这些问题的任何进展不仅会阐明数学中的一些基本问题,而且还将在物理学和其他科学中得到应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valentino Tosatti其他文献
An extension theorem for Kähler currents with analytic singularities
具有解析奇点的凯勒电流的可拓定理
- DOI:
10.5802/afst.1429 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tristan C. Collins;Valentino Tosatti - 通讯作者:
Valentino Tosatti
On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows
关于卡拉比丘流形的塌陷和克勒利玛窦流
- DOI:
10.1515/crelle-2023-0025 - 发表时间:
2021-07-02 - 期刊:
- 影响因子:0
- 作者:
Yang Li;Valentino Tosatti - 通讯作者:
Valentino Tosatti
The Monge-Ampère equation for (n − 1)-plurisubharmonic functions on a compact Kähler manifold
紧克勒流形上 (n – 1) 复次谐波函数的 Monge-Ampère 方程
- DOI:
10.1090/jams/875 - 发表时间:
2013-05-31 - 期刊:
- 影响因子:3.9
- 作者:
Valentino Tosatti;B. Weinkove - 通讯作者:
B. Weinkove
Inoue surfaces and the Chern-Ricci flow
井上表面和陈-利玛窦流
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
Shouwen Fang;Valentino Tosatti;Ben Weinkove;Tao Zheng - 通讯作者:
Tao Zheng
Gauduchon metrics with prescribed volume form
具有规定体积形式的高杜雄指标
- DOI:
10.4310/acta.2017.v219.n1.a6 - 发表时间:
2015-03-16 - 期刊:
- 影响因子:0
- 作者:
G'abor Sz'ekelyhidi;Valentino Tosatti;B. Weinkove - 通讯作者:
B. Weinkove
Valentino Tosatti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valentino Tosatti', 18)}}的其他基金
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
1903147 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Geometric Analysis on Complex Manifolds
复杂流形的几何分析
- 批准号:
1610278 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Geometry and Analysis on Calabi-Yau and Hermitian Manifolds
Calabi-Yau 和 Hermitian 流形的几何与分析
- 批准号:
1308988 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
- 批准号:
1005457 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
发展型偏微分方程组中基于部分观测数据的系数辨识问题
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
- 批准号:61573217
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
部分可观测信息下的双重随机最优控制理论及其应用
- 批准号:11301298
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于部分线性模型的随机偏微分方程辨识方法研究
- 批准号:11301544
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分可观的带随机跳正倒向随机系统的最优控制理论及其应用
- 批准号:11201263
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant