SHB: Type I (EXP): Algorithms for Unsupervised and Online Learning of Hierarchy of Features for Tuning Cochlear Implants for the Hearing Impaired
SHB:I 型(EXP):用于调整听力障碍者人工耳蜗的特征层次结构的无监督和在线学习算法
基本信息
- 批准号:1231620
- 负责人:
- 金额:$ 29.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since noteworthy events happen only occasionally in any data, it is imperative for smart sensors to learn the norms in data so that authorities can be alerted and appropriate action can be taken at the occurrence of an abnormal or noteworthy event. The aim of this project is to develop algorithms that can learn the norm in terms of a hierarchy of meaningful features from data in an unsupervised and online manner. The application testbed is the problem of automatically tuning cochlear implants (CIs) of patients with severe-to-profound hearing loss by continuously monitoring their speech output. The working hypothesis is that deficiencies in hearing for people with significant hearing loss are reflected in their speech production. This project will develop and use unsupervised, online, and biologically plausible machine learning algorithms to learn feature hierarchies from the speech output data of severely-to-profoundly hearing-impaired patients. The learned feature hierarchy from the speech of a patient will be compared to those learned from the speech of a comparable normal hearing population. Deficiencies in the patient's hearing will be ascertained by identifying the missing or distorted features. Algorithms will be developed to map this information into the signal processing strategies used in CIs to enhance the audibility of speech.The proposed project promises transformative changes to three major interdisciplinary fields: machine learning and artificial intelligence, healthcare, and sensors. It will transform the traditional ways in which the clinical needs of patients are met. For example, the results of this project will provide doctors with evidence-based practices that will better address the specific needs of individual patients by monitoring each patient around the clock at minimal effort and cost.Hearing loss is the most common birth defect in the U.S. with slightly over 15,000 new pediatric cases each year and societal losses amounting to $4.6 billion over a lifetime. A proven technology for CI tuning would make a significant difference to the lives of over 1.2 million CI candidates in the U.S. and many more around the world, thereby leading to substantial health and economic benefits to society. Other than CI tuning, the proposed algorithms will be applicable to a variety of monitoring applications within healthcare, such as blood pressure, cerebrospinal fluid pressure, intracavitary pressure of the bladder, etc., and beyond healthcare, such as web, machine health, traffic, etc. Continuous monitoring with wearable and implantable body sensors will increase early detection of emergency conditions and diseases in at-risk patients and also provide a wide range of healthcare services for people with various degrees of cognitive and physical disabilities. Not only the elderly and chronically ill, but also the families in which both parents have to work will benefit from these systems to provide high-quality care services for their babies and children. Finally, the proposed project will integrate diversity by promoting teaching, learning, and interdisciplinary research among underrepresented groups.
由于值得注意的事件在任何数据中只是偶尔发生,因此智能传感器必须了解数据中的规范,以便在发生异常或值得注意的事件时向当局发出警报并采取适当的行动。该项目的目的是开发算法,能够以无监督和在线的方式从数据中的有意义特征的层次结构中学习规范。该应用测试平台的问题是通过持续监测重度至极重度听力损失患者的语音输出来自动调整人工耳蜗(CI)。有效的假设是,严重听力损失者的听力缺陷反映在他们的言语表达中。该项目将开发和使用无监督、在线且生物学上合理的机器学习算法,从重度至极重度听力障碍患者的语音输出数据中学习特征层次结构。从患者的语音中学习到的特征层次结构将与从可比较的正常听力人群的语音中学到的特征层次结构进行比较。通过识别缺失或扭曲的特征来确定患者的听力缺陷。我们将开发算法,将这些信息映射到 CI 中使用的信号处理策略中,以提高语音的可听度。拟议的项目有望为三个主要跨学科领域带来变革:机器学习和人工智能、医疗保健和传感器。它将改变满足患者临床需求的传统方式。例如,该项目的结果将为医生提供循证实践,通过以最小的努力和成本全天候监测每位患者,更好地满足个别患者的特定需求。 听力损失是美国最常见的出生缺陷。每年新增儿科病例略多于 15,000 例,一生造成的社会损失高达 46 亿美元。一项经过验证的 CI 调整技术将为美国和世界各地超过 120 万 CI 考生的生活带来重大改变,从而为社会带来巨大的健康和经济效益。除了 CI 调整之外,所提出的算法将适用于医疗保健领域的各种监测应用,例如血压、脑脊液压力、膀胱腔内压力等,以及医疗保健之外的各种监测应用,例如网络、机器健康、交通等。使用可穿戴和植入式身体传感器进行持续监测将有助于对高危患者的紧急情况和疾病进行早期发现,并为患有不同程度认知和身体残疾的人提供广泛的医疗服务。不仅老年人和慢性病患者,父母双方都有工作的家庭也将受益于这些系统,为他们的婴儿和儿童提供高质量的护理服务。最后,拟议的项目将通过促进代表性不足群体的教学、学习和跨学科研究来整合多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bonny Banerjee其他文献
Hierarchical feature learning from sensorial data by spherical clustering
通过球形聚类从传感数据中学习分层特征
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bonny Banerjee;Jayanta K. Dutta - 通讯作者:
Jayanta K. Dutta
Augmenting Cognitive Architectures to Support Diagrammatic Imagination
增强认知架构以支持图解想象力
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3
- 作者:
B. Chandrasekaran;Bonny Banerjee;Unmesh Kurup;Omkar Lele - 通讯作者:
Omkar Lele
Corpus of deaf speech for acoustic and speech production research.
用于声学和语音生成研究的聋人语音语料库。
- DOI:
10.1121/1.4994288 - 发表时间:
2017-07-19 - 期刊:
- 影响因子:2.4
- 作者:
L. L. Mendel;Sungmin Lee;Monique Pousson;Chhayakanta Patro;Skylar McSorley;Bonny Banerjee;S. Najnin;Masoumeh Heidari Kapourchali - 通讯作者:
Masoumeh Heidari Kapourchali
Learning Environmental States via Communication
通过交流学习环境状态
- DOI:
10.1007/978-3-030-55130-8_36 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Masoumeh Heidari Kapourchali;Bonny Banerjee - 通讯作者:
Bonny Banerjee
Identifying Hearing Deficiencies from Statistically Learned Speech Features for Personalized Tuning of Cochlear Implants
从统计学习的语音特征中识别听力缺陷,以个性化调整人工耳蜗
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bonny Banerjee;L. L. Mendel;Jayanta K. Dutta;H. Shabani;S. Najnin - 通讯作者:
S. Najnin
Bonny Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
不同菌根类型树种对亚热带森林土壤有机碳积累的影响机制
- 批准号:32371849
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不同菌根类型树种与毛竹磷竞争对土壤碳动态的影响机制
- 批准号:32371726
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
菌根类型对亚热带山地森林土壤碳积累的影响及其作用机理
- 批准号:32371736
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
西南地区植被生长和类型转换变绿对局地气候的影响
- 批准号:42301027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
齿菌属(Hydnum)的系统学与菌根组合类型研究
- 批准号:32300002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHB: Type I (EXP): Collaborative Research: Heterogeneous Large-Scale Telemedicine for Cardiology Patients
SHB:I 型(EXP):合作研究:针对心脏病患者的异构大规模远程医疗
- 批准号:
1460370 - 财政年份:2014
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
SHB: Type I (EXP): Health Sense: Motivating Health Awareness in Children through Wearable Computing
SHB:I 型(EXP):健康意识:通过可穿戴计算激发儿童的健康意识
- 批准号:
1439241 - 财政年份:2013
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
SHB: Type I (EXP): Collaborative Research: EasySense: Contact-less Physiological Sensing in the Mobile Environment Using Compressive Radio Frequency Probes
SHB:I 型(EXP):合作研究:EasySense:使用压缩射频探头在移动环境中进行非接触式生理传感
- 批准号:
1231577 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
SHB: Type I (EXP): Long-term Mobile Monitoring and Analysis of Sleep-Cognition Relationship
SHB:I 型(EXP):睡眠-认知关系的长期移动监测和分析
- 批准号:
1231515 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
SHB: Type I (EXP): Collaborative Research: EasySense: Contact-less Physiological Sensing in the Mobile Environment Using Compressive Radio Frequency Probes
SHB:I 型(EXP):合作研究:EasySense:使用压缩射频探头在移动环境中进行非接触式生理传感
- 批准号:
1231525 - 财政年份:2012
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant