EAGER: Collaborative Research: Computational Public Drug Surveillance
EAGER:合作研究:计算公共药物监测
基本信息
- 批准号:1236983
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adverse drug reactions (ADR) (undesired or excessive responses drugs) have been linked with significant morbidity and mortality, and account for as much as 5% of all admissions. A drug-drug interaction (DDI) is a type of ADR involving two or more drugs. Reports suggest that 50% percent of the drugs withdrawn in the U.S. by the Food and Drug Administration (FDA) from 1999 to 2003 were linked with significant DDIs. The ADR profile of a given drug is rarely complete at the time the drug is approved by FDA. Hence, after a drug has been in use by the general population (with significant diversity in race, gender, age, lifestyle), often previously unidentified DDIs are discovered. To complicate matters, certain populations of patients, e.g., psychiatric patients, are often concurrently treated with multiple medications. The potential interactions between multiple drugs are neither well understood nor completely characterized. Voluntary reporting, the basic mechanism used by the FDA to monitor new drugs, suffers from underreporting, delayed reporting, uneven quality of reports, and even lack of reports of rare DDIs.Against this background, this collaborative project aims to explore the feasibility of a novel computational approach to the problem of drug-drug interaction surveillance. It seeks to develop new methods for predicting molecular level interactions between drugs from data gleaned from online sources and digital social media. The project aims to test the hypothesis that such online data, in combination with with data from traditional drug related databases can be used to reliably predict potential DDIs much sooner than possible using current methods. The effectiveness of the approach is assessed through verification of predictions against future reports. If successful, the project could lead to effective, proactive computational approaches to drug interaction surveillance, with benefits to federal, local and public health agencies, drug companies, clinical practitioners, the patients, and the public at large. Early detection of adverse DDIs could lead to improved patient care, and significant reduction in healthcare costs and lawsuits involving DDIs. The project offers enhanced opportunities for collaboration among investigators with expertise in computational and health sciences. It also offers research-based training opportunities to students at West Virgina University and the University of Virginia. Results of the research will be freely disseminated to the broader academic and research community.
药物不良反应 (ADR)(药物不良反应或过度反应)与显着的发病率和死亡率相关,占所有入院人数的 5% 之多。药物相互作用 (DDI) 是涉及两种或多种药物的 ADR 类型。报告显示,从 1999 年到 2003 年,美国食品和药物管理局 (FDA) 撤回的药物中有 50% 与重要的 DDI 有关。特定药物的 ADR 概况在 FDA 批准该药物时很少是完整的。因此,在普通人群(种族、性别、年龄、生活方式存在显着差异)使用某种药物后,通常会发现以前未识别的 DDI。使事情变得复杂的是,某些患者群体,例如精神病患者,经常同时接受多种药物治疗。多种药物之间的潜在相互作用既未得到充分理解,也未完全表征。自愿报告作为FDA监测新药的基本机制,存在漏报、迟报、报告质量参差不齐,甚至罕见DDI报告缺失等问题。在此背景下,本合作项目旨在探讨自愿报告的可行性。药物相互作用监测问题的新颖计算方法。它寻求开发新方法,根据从在线资源和数字社交媒体收集的数据来预测药物之间的分子水平相互作用。该项目旨在测试这样的假设:这些在线数据与传统药物相关数据库的数据相结合,可以比使用现有方法更快地可靠地预测潜在的 DDI。该方法的有效性是通过根据未来报告验证预测来评估的。如果成功,该项目可能会带来有效、主动的药物相互作用监测计算方法,从而使联邦、地方和公共卫生机构、制药公司、临床医生、患者和广大公众受益。及早发现不良 DDI 可以改善患者护理,并显着减少医疗费用和涉及 DDI 的诉讼。该项目为具有计算和健康科学专业知识的研究人员之间的合作提供了更多的机会。它还为西弗吉尼亚大学和弗吉尼亚大学的学生提供基于研究的培训机会。研究结果将免费传播给更广泛的学术和研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Adjeroh其他文献
Understanding ChatGPT: Impact Analysis and Path Forward for Teaching Computer Science and Engineering
了解 ChatGPT:计算机科学与工程教学的影响分析和前进道路
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Paramarshi Banerjee;Anurag Srivastava;Donald Adjeroh;Y. R. Reddy;Nima Karimian;Ramana Reddy - 通讯作者:
Ramana Reddy
Donald Adjeroh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Adjeroh', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318708 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
RII Track 2 FEC: Multi-Scale Integrative Approach to Digital Health: Collaborative Research and Education in Smart Health in West Virginia and Arkansas
RII Track 2 FEC:数字健康的多尺度综合方法:西弗吉尼亚州和阿肯色州智能健康的合作研究和教育
- 批准号:
1920920 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别:
Cooperative Agreement
Workshop: Community Building for Long Non-Coding RNA; Fall/Summer; Morgantown, WVA; Houston, TX
研讨会:长非编码RNA社区建设;
- 批准号:
1747788 - 财政年份:2018
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761792 - 财政年份:2018
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
- 批准号:
1816005 - 财政年份:2018
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
SBP 2015 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2015 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1523458 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: CRUFS: A Unified Framework for Social Media Analysis of Adverse Drug Events
EAGER:协作研究:CRUFS:药物不良事件社交媒体分析的统一框架
- 批准号:
1552860 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
SBP 2012 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2012 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1225981 - 财政年份:2012
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
U.S.-New Zealand and Australia Collaboration on Research for Data Compression
美国、新西兰和澳大利亚在数据压缩研究方面的合作
- 批准号:
0331896 - 财政年份:2004
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant