A Center for Brains, Minds and Machines: the Science and the Technology of Intelligence
大脑、思想和机器中心:智能科学与技术
基本信息
- 批准号:1231216
- 负责人:
- 金额:$ 2500万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Today's AI technologies, such as Watson, Siri and MobilEye, are impressive yet still confined to a single domain or task. Imagine how truly intelligent systems --- systems that actually understand their world --- could change our world. The work of scientists and engineers could be amplified to help solve the world's most pressing technical problems. Education, healthcare and manufacturing could be transformed. Mental health could be understood on a deeper level, leading in turn to more effective treatments of brain disorders. These accomplishments will take decades. The proposed Center for Brains, Minds, and Machines (CBMM) will enable the kind of research needed to ultimately achieve such ambitious goals. The vision of the Center is of a world where intelligence, and how it emerges from brain activity, is truly understood. A successful research plan for realizing this vision requires four main areas of inquiry and integrated work across all four guided by a unifying theoretical foundation. First, understanding intelligence requires discovering how it develops from the interplay of learning and innate structure. Second, understanding the physical machinery of intelligence requires analyzing brains across multiple levels of analysis, from neural circuits to large-scale brain architecture. Third, intelligence goes beyond the narrow expertise of chess or Jeopardy-playing computers, bridging several domains including vision, planning, action, social interactions, and language. Finally, intelligence emerges from the interactions among individuals ? it is the product of social interactions. Therefore, the research of the Center engages four major research thrusts (Reverse Engineering the Infant Mind, Neuronal Circuits Underlying Intelligence, Integrating Intelligence, and Social Intelligence) with interlocking teams and working groups, and a common theoretical, mathematical, and computational platform (Enabling Theory).The intellectual merit of the Center is its focus on elucidating the mechanisms and architecture of intelligence in the most intelligent system known: the human brain. Success in this project will ultimately enable us to understand ourselves better, to produce smarter machines, and perhaps even to make ourselves smarter. The Center's potential legacy of a deep understanding of intelligence, and the ability to engineer it, is tantalizing and timeless. It includes the creation of a community of researchers by programs such as an intensive summer school, technical workshops and online courses that will train the next generation of scientists and engineers in an emerging new field -- the Science and Engineering of Intelligence. This new field will catalyze continuing progress in and cross-fertilization between computer science, math and statistics, robotics, neuroscience, and cognitive science. Sitting between science and engineering, it will attract growing interest from the best students at all levels. The broader impact of the Center program could be to revolutionize K-12, and also 0-K, and 12-life with a deeper understanding of the process of learning. The ability to build more human-like intelligence in machines will transform our productivity, enabling robots to care for the aged, drive our cars, and help with small-business manufacturing. The Center team is composed of over 23 investigators, many having already made significant accomplishments in multiple research areas relevant to the science and the technology of intelligence. The Center team has a mix of junior and senior researchers, bringing expertise in Computer Science, Neuroscience, Cognitive Science and Mathematics. The institutional partners include nine institutions (MIT, Harvard, Cornell, Rockefeller, UCLA, Stanford, The Allen Institute, Wellesley, Howard, Hunter and the University of Puerto Rico), three of which have significant underrepresented student populations. The academic institutions are complemented by the Center's industrial partners (Microsoft, IBM, Google, DeepMind, Orcam, MobilEye, Willow Garage, RethinkRobotics, Boston Dynamics) and by world-renowned researchers at international institutions (Max Planck Institute, The Weizmann Institute, Italian Institute of Technology, The Hebrew University).
当今的人工智能技术,例如 Watson、Siri 和 MobilEye,令人印象深刻,但仍然局限于单一领域或任务。想象一下真正的智能系统——真正理解其世界的系统——如何改变我们的世界。 科学家和工程师的工作可以扩大,以帮助解决世界上最紧迫的技术问题。教育、医疗保健和制造业可以发生转变。 人们可以更深入地了解心理健康,从而更有效地治疗大脑疾病。 这些成就需要几十年的时间。 拟建的大脑、思维和机器中心 (CBMM) 将使最终实现这些雄心勃勃的目标所需的研究成为可能。该中心的愿景是建立一个真正理解智力及其如何从大脑活动中产生的世界。实现这一愿景的成功研究计划需要四个主要领域的探究以及在统一理论基础指导下跨所有四个领域的综合工作。首先,理解智力需要发现它是如何从学习和先天结构的相互作用中发展出来的。其次,理解智能的物理机制需要从神经回路到大规模大脑结构等多个层面对大脑进行分析。第三,智能超越了国际象棋或玩危险游戏的计算机的狭隘专业知识,它跨越了多个领域,包括视觉、规划、行动、社交互动和语言。最后,智力是从个体之间的相互作用中产生的?它是社会互动的产物。因此,该中心的研究涉及四个主要研究方向(婴儿心智逆向工程、智能背后的神经元回路、整合智能和社会智能),以及相互关联的团队和工作组,以及一个共同的理论、数学和计算平台(使能该中心的智力优势在于它专注于阐明已知最智能的系统:人脑中的智能机制和架构。 这个项目的成功最终将使我们能够更好地了解自己,生产出更智能的机器,甚至可能让我们自己变得更聪明。该中心对智能的深刻理解和设计能力的潜在遗产是诱人且永恒的。它包括通过强化暑期学校、技术研讨会和在线课程等项目创建一个研究人员社区,这些项目将在新兴的新领域——智能科学与工程——培训下一代科学家和工程师。这个新领域将促进计算机科学、数学和统计学、机器人学、神经科学和认知科学之间的持续进步和交叉融合。介于科学和工程之间,它将吸引各个级别最优秀学生越来越多的兴趣。 该中心计划的更广泛影响可能是通过对学习过程有更深入的了解,彻底改变 K-12、0-K 和 12-life。 在机器中构建更多类人智能的能力将改变我们的生产力,使机器人能够照顾老年人、驾驶汽车并帮助小型企业制造。该中心团队由超过 23 名研究人员组成,其中许多人已经在与情报科学和技术相关的多个研究领域取得了重大成就。该中心团队由初级和高级研究人员组成,带来计算机科学、神经科学、认知科学和数学方面的专业知识。机构合作伙伴包括九个机构(麻省理工学院、哈佛大学、康奈尔大学、洛克菲勒大学、加州大学洛杉矶分校、斯坦福大学、艾伦研究所、韦尔斯利大学、霍华德大学、亨特大学和波多黎各大学),其中三个机构的学生人数严重不足。该中心的工业合作伙伴(微软、IBM、谷歌、DeepMind、Orcam、MobilEye、Willow Garage、RethinkRobotics、波士顿动力)以及国际机构(马克斯·普朗克研究所、魏茨曼研究所、意大利希伯来大学技术学院)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomaso Poggio其他文献
Statistical Learning : CV loo stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:CV loo 稳定性足以进行泛化,并且对于经验风险最小化的一致性也是必要和充分的
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin - 通讯作者:
R. Rifkin
Statistical Learning : LOO stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:LOO 稳定性足以进行泛化,并且对于经验风险最小化的一致性来说是必要和充分的
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin - 通讯作者:
R. Rifkin
Wiener-like system identification in physiology
生理学中的类维纳系统识别
- DOI:
- 发表时间:
1977 - 期刊:
- 影响因子:1.9
- 作者:
Günther Palm;Tomaso Poggio - 通讯作者:
Tomaso Poggio
Comparison of alfaxalone and propofol administered for total intravenous anaesthesia during ovariohysterectomy in dogs
阿法沙酮与丙泊酚在犬卵巢子宫切除术中全凭静脉麻醉的比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tomaso Poggio;M. Fraser - 通讯作者:
M. Fraser
MIT Open Access Articles Attention as a Bayesian inference process
麻省理工学院开放获取文章注意力作为贝叶斯推理过程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Chikkerur;Thomas Serre;Cheston Tan;Tomaso Poggio - 通讯作者:
Tomaso Poggio
Tomaso Poggio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomaso Poggio', 18)}}的其他基金
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain
协作研究:深度学习的基础:理论、稳健性和大脑 —
- 批准号:
2134108 - 财政年份:2021
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
Collaborative Proposal: Object and Action Recognition in Time Sequences of Images: Computational Neuroscience and Neurophysiology
协作提案:图像时间序列中的对象和动作识别:计算神经科学和神经生理学
- 批准号:
0827483 - 财政年份:2008
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
Computational Models and Physiological Studies of Feedback in Visual Object Recognition Tasks
视觉对象识别任务中反馈的计算模型和生理学研究
- 批准号:
0640097 - 财政年份:2007
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
Collaborative Research: CRCNS: Detection and Recognition of Objects in Visual Cortex
合作研究:CRCNS:视觉皮层中物体的检测和识别
- 批准号:
0218693 - 财政年份:2002
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
ITR: From Bits to Information: Statistical Learning Technologies for Digital Information Management and Search
ITR:从比特到信息:数字信息管理和搜索的统计学习技术
- 批准号:
0085836 - 财政年份:2000
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
KDI: Learning of Objects and Object Classes in Visual Cortex
KDI:视觉皮层中对象和对象类的学习
- 批准号:
9872936 - 财政年份:1998
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
CISE Postdoctoral Program: Complexity of Learning with Applications to Natural Language
CISE博士后项目:学习的复杂性及其在自然语言中的应用
- 批准号:
9504054 - 财政年份:1995
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
Motion Analysis in Biological and Computer Vision Systems
生物和计算机视觉系统中的运动分析
- 批准号:
8719394 - 财政年份:1988
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
相似国自然基金
大脑皮层层级结构中预期对知觉的影响及其机制
- 批准号:32300864
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
减重术后复胖患者大脑“奖赏-控制”回路功能异常变化的影像学与脑调控干预研究
- 批准号:82302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于含小胶质细胞人类大脑类器官探究NMN促进线粒体生物发生对新生儿缺血缺氧性脑病的保护作用
- 批准号:82360316
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
HPA轴-YY1介导慢性压力刺激大脑胞外囊泡WDFY1累积和诱发骨代谢失衡的机制研究
- 批准号:82372479
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于大脑空间模式相似性探究精神分裂症纹状体的结构异常及其遗传关联研究
- 批准号:82302288
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Fellowship
Elucidation of the role of perivascular macrophages in stroke using animal models for disease and autopsy brains
使用疾病动物模型和尸检脑阐明血管周围巨噬细胞在中风中的作用
- 批准号:
23K09773 - 财政年份:2023
- 资助金额:
$ 2500万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High density chronic optogenetic interface for primate brains
灵长类大脑的高密度慢性光遗传学接口
- 批准号:
10706899 - 财政年份:2023
- 资助金额:
$ 2500万 - 项目类别:
Neuron-to-Neuron Interface: Optically Connected Neurons Between the Brains of Two Zebrafish
神经元到神经元接口:两条斑马鱼大脑之间的光学连接神经元
- 批准号:
2309589 - 财政年份:2023
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant