Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms

开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法

基本信息

  • 批准号:
    1216454
  • 负责人:
  • 金额:
    $ 16.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The objective of the proposed project is to provide a class of novel high-order accurate and efficient well-balanced discontinuous Galerkin (DG) and Weighted Essentially Non-Oscillatory (WENO) schemes for the shallow-water equations and other hyperbolic conservation laws with source terms. The proposed activity includes a comprehensive coverage of new algorithm development, theoretical numerical analysis, numerical implementation issues and practical applications. The investigator proposes to provide a detailed study of highly efficient high-order well-balanced methods in the following directions: 1. Development of well-balanced methods: Very accurate well-balanced numerical methods will be developed for several equations arising in different areas; 2. Shallow-water equations: Positivity-preserving well-balanced methods for the shallow-water equations will be developed. Then, the investigator will investigate their performance, including efficiency, scalability, etc., and study their potential application in the coastal ocean modeling; 3. Euler equations under a gravitational field: Hydrodynamical evolution in a gravitational field arises in most astrophysical problems. The investigator will develop well-balanced methods for such system; 4. Nonlinear water wave equations: Conservative DG methods will be developed for nonlinear dispersive wave equations.The proposed project will provide more efficient and accurate numerical approaches to solve the shallow-water equations, and other conservation laws with source term. It will have a direct impact in many application problems arising from hydraulic engineering and atmospheric modeling, and is suitable for other source-term problems in chemistry, biology, fluid dynamics, astrophysics, and meteorology. Due to its multi-disciplinary nature, the proposed research will initiate and serve as a solid foundation for collaborative research work with applied mathematicians, hydraulic engineers and astrophysicists, and promote interdisciplinary research between Oak Ridge National Laboratory and the University of Tennessee. The proposed project will also provide training and education opportunities for both graduate and undergraduate students interested in computational mathematics.
该项目的目标是为浅水方程和其他双曲守恒定律提供一类新颖的高阶精确且高效的良好平衡的不连续伽辽金(DG)和加权本质非振荡(WENO)格式条款。拟议的活动全面涵盖新算法开发、理论数值分析、数值实现问题和实际应用。研究者建议在以下方向对高效高阶平衡方法进行详细研究: 1. 平衡方法的发展:针对不同领域中出现的多个方程开发非常精确的平衡数值方法; 2. 浅水方程:将开发浅水方程的保正性平衡方法。然后,研究者将调查它们的性能,包括效率、可扩展性等,并研究它们在沿海海洋建模中的潜在应用; 3. 引力场下的欧拉方程:引力场中的流体动力学演化出现在大多数天体物理问题中。研究者将为该系统开发均衡的方法; 4. 非线性水波方程:将针对非线性色散波动方程开发保守的DG方法。该项目将为求解浅水方程和其他带有源项的守恒定律提供更高效、更精确的数值方法。它将对水利工程和大气建模产生的许多应用问题产生直接影响,并且适用于化学、生物学、流体动力学、天体物理学和气象学等其他源项问题。由于其多学科性质,拟议的研究将启动并为与应用数学家、水利工程师和天体物理学家的合作研究工作奠定坚实的基础,并促进橡树岭国家实验室和田纳西大学之间的跨学科研究。拟议的项目还将为对计算数学感兴趣的研究生和本科生提供培训和教育机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulong Xing其他文献

Railway track circuit fault diagnosis using 1DCNN considering locality dependencies and multiscale feature fusion
考虑局部依赖性和多尺度特征融合的1DCNN铁路轨道电路故障诊断
Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels
明渠浅水流保正性良好平衡间断伽辽金法
  • DOI:
    10.1016/j.advwatres.2018.03.001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Shouguo Qian;Gang Li;Fengjing Shao;Yulong Xing
  • 通讯作者:
    Yulong Xing
Time Synchronization for Wireless Sensor NetworksUsing Adaptive Linear Prediction
使用自适应线性预测的无线传感器网络时间同步
Time Synchronization for Wireless Sensor Networks Using Adaptive Linear Prediction
Optimal beacon interval for TDMA-based MAC in wireless sensor networks
无线传感器网络中基于 TDMA 的 MAC 的最佳信标间隔

Yulong Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulong Xing', 18)}}的其他基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Standard Grant
CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws
职业:双曲守恒定律的高阶结构保持数值方法
  • 批准号:
    1654673
  • 财政年份:
    2017
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Continuing Grant
CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws
职业:双曲守恒定律的高阶结构保持数值方法
  • 批准号:
    1753581
  • 财政年份:
    2017
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Continuing Grant
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
  • 批准号:
    1621111
  • 财政年份:
    2015
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Standard Grant

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Interactions of tick-borne pathogens, Borrelia burgdorferi and Babesia microti with the mammalian host using rodent model of co-infections
使用啮齿动物共感染模型研究蜱传病原体、伯氏疏螺旋体和田鼠巴贝虫与哺乳动物宿主的相互作用
  • 批准号:
    10226964
  • 财政年份:
    2019
  • 资助金额:
    $ 16.62万
  • 项目类别:
Interactions of tick-borne pathogens, Borrelia burgdorferi and Babesia microti with the mammalian host using rodent model of co-infections
使用啮齿动物共感染模型研究蜱传病原体、伯氏疏螺旋体和田鼠巴贝虫与哺乳动物宿主的相互作用
  • 批准号:
    10467070
  • 财政年份:
    2019
  • 资助金额:
    $ 16.62万
  • 项目类别:
Development of highly accurate figure measurement method using high order harmonic generation source
开发使用高次谐波发生源的高精度图形测量方法
  • 批准号:
    17K18821
  • 财政年份:
    2017
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of high-order accurate numerical methods for the shallow-water equations and other hyperbolic conversation laws with source terms
开发浅水方程和其他带有源项的双曲对话律的高阶精确数值方法
  • 批准号:
    1621111
  • 财政年份:
    2015
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Standard Grant
Development of fast and high-order accurate time-domain PDE solvers for complex geometries
开发复杂几何形状的快速、高阶精确时域 PDE 求解器
  • 批准号:
    0915178
  • 财政年份:
    2009
  • 资助金额:
    $ 16.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了