Dynamical Rigidity Percolation in Microtubule Bundles

微管束中的动态刚性渗透

基本信息

  • 批准号:
    1207624
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis award supports theoretical and computational research and education at the interface of the mathematical sciences and biology. The coupled microtubule-tau bundles of the neuronal axon are a remarkable active material, functionally stable over decades even as the component proteins are constantly renewed. Using mechanisms proposed for tau removal in late stages of Alzheimer's Disease, which are initiated by oligomerization of the a-beta peptide, the PIs will develop a coarse grained theory of the mechanical failure of this system as the tau proteins are depleted via: (i) tau fragmentation induced by a-beta oligomer triggered protease production; (ii) tau charging (phosphorylation) through a-beta triggered kinase production; (iii) aggregation which robs tau monomers from the bundles. The kinetics of these processes should produce different time courses for tau removal and hence allow insight into mechanical failure mechanisms. The taus will be modeled as springs. The PIs will carry out explicit molecular dynamics simulations on likely tau oligomer structures to determine the relevant spring forces. The compressed tau springs hold off mechanical collapse induced by at least two sources: (i) depletion forces between microtubules induced by intercalating molecules, which have a higher translational entropy when the microtubules collapse together; (ii) surface tension from the outer membrane/actin filament cytoskeleton. The PIs will develop force models for the taus and microtubule depletion forces, and input them to a 2-dimensional percolation model for the mechanical rigidity. The sequential "spring removal" can be mapped to the kinetics of the tau degradation to predict time courses for cell mechanics experiments conducted under exposure to a-beta oligomers. The PIs will also explore a fully three-dimensional model, which allows for tilting of the microtubules, which might be important for allowing the microtubules to experience the depletion attraction. Finally, the PIs will attempt to develop algorithms to scale the time behavior at high laboratory concentrations for the damaging A-beta oligomers of Alzheimer's disease to physiologically relevant concentrations. The use of mechanical approaches to the study of intracellular properties is relatively new, as experimental approaches are only recently catching up to theoretical potential. The PIs will support both graduate students and advanced undergraduates to work on these problems; they will receive interdisciplinary education in the physical and biological sciences, and will have access to state of the art GPU based computing facilities augmented by this award. NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education at the interface of the mathematical sciences and biology. The PIs will develop computer-based models for the mechanical properties of the proteins inside the long shafts, or axons, of nerve cells. Specifically, they will simulate the long protein filaments, known as microtubules, which are interlinked by protein springs, tau proteins, to find how the stiffness of the system is degraded when the tau proteins are removed. This happens in the time course of Alzheimer's disease, but the precise manner in which the tau removal occurs is a matter of ongoing investigation. By developing simulations of the mechanical properties of these protein bundles, which include the dynamical behavior of the tau proteins and the microtubules, the PIs can account for the different paths by which tau proteins can be degraded in Alzheimer's disease. Including forces driving microtubules together due to other molecules inside the nerve cells and the "balloon skin" of the nerve cell external membrane, the PIs hope to provide experimentally testable predictions to identify the key processes of nerve cell degradation and death in Alzheimer's disease. Tau proteins are interesting systems in their own right: unlike proteins such as hemoglobin which adopt unique shapes in the human body, tau proteins are intrinsically unstructured yet clearly important to nerve cell function. As an input to larger scale mechanical models, the PIs will simulate the mechanical properties of individual and paired tau proteins. The insights gained may provide inspiration for new approaches to active, self-healing composite materials outside of living systems. Since the microtubule/tau bundles remain mechanically stable and functional over decades of time in healthy, disease free individuals, they are remarkable model systems for such smart, active materials.
技术摘要该奖项支持数学科学和生物学交叉领域的理论和计算研究及教育。神经元轴突的耦合微管-tau 束是一种非凡的活性物质,即使其成分蛋白质不断更新,其功能也能稳定数十年。利用在阿尔茨海默氏病晚期阶段去除 tau 蛋白的机制(该机制是由 a-β 肽寡聚化引发的),PI 将开发出一种粗粒度理论,说明当 tau 蛋白通过以下方式耗尽时该系统的机械故障:(i ) 由 a-β 寡聚体引发的蛋白酶产生诱导 tau 片段化; (ii) 通过 a-β 触发激酶产生进行 tau 充电(磷酸化); (iii) 聚集,从束中夺走 tau 单体。 这些过程的动力学应该产生不同的 tau 蛋白去除时间过程,从而可以深入了解机械故障机制。 taus 将被建模为弹簧。 PI 将对可能的 tau 寡聚物结构进行明确的分子动力学模拟,以确定相关的弹簧力。 压缩的 tau 弹簧可以阻止由至少两个来源引起的机械塌陷:(i)由嵌入分子引起的微管之间的耗尽力,当微管一起塌陷时,微管之间具有更高的平移熵; (ii)来自外膜/肌动蛋白丝细胞骨架的表面张力。 PI 将开发 taus 和微管耗尽力的力模型,并将其输入到机械刚性的二维渗透模型中。 连续的“弹簧去除”可以映射到 tau 降解的动力学,以预测在暴露于 α-β 寡聚物下进行的细胞力学实验的时间进程。 PI 还将探索一个完整的三维模型,该模型允许微管倾斜,这对于让微管体验耗尽吸引力可能很重要。最后,PI 将尝试开发算法,将阿尔茨海默氏病的破坏性 A-β 寡聚物在高实验室浓度下的时间行为扩展到生理相关浓度。使用机械方法来研究细胞内特性相对较新,因为实验方法最近才赶上理论潜力。 PI 将支持研究生和高年级本科生解决这些问题;他们将接受物理和生物科学方面的跨学科教育,并将有机会使用由该奖项增强的最先进的基于 GPU 的计算设施。非技术摘要该奖项支持数学科学和生物学交叉领域的理论和计算研究及教育。 PI 将开发基于计算机的模型,用于研究神经细胞长轴或轴突内蛋白质的机械特性。具体来说,他们将模拟长蛋白质丝(称为微管),它们通过蛋白质弹簧(tau 蛋白)相互连接,以了解当 tau 蛋白被去除时系统的刚度如何降低。 这种情况发生在阿尔茨海默氏病的病程中,但 tau 蛋白去除发生的精确方式仍在研究中。 通过对这些蛋白束的机械特性(包括 tau 蛋白和微管的动态行为)进行模拟,PI 可以解释 tau 蛋白在阿尔茨海默病中降解的不同途径。包括由于神经细胞内的其他分子和神经细胞外膜的“气球皮”而驱动微管在一起的力,PI希望提供可通过实验测试的预测,以确定阿尔茨海默病中神经细胞退化和死亡的关键过程。 Tau 蛋白本身就是有趣的系统:与血红蛋白等在人体内具有独特形状的蛋白质不同,tau 蛋白本质上是非结构化的,但对神经细胞功能显然很重要。 作为更大规模机械模型的输入,PI 将模拟单个和配对 tau 蛋白的机械特性。 所获得的见解可能会为生命系统之外活性、自修复复合材料的新方法提供灵感。 由于微管/tau 蛋白束在健康、无疾病的个体中数十年保持机械稳定性和功能,因此它们是此类智能活性材料的卓越模型系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cox其他文献

Spectroscopy of actinide and transactinide nuclei
锕系元素和反锕系元素核的光谱
  • DOI:
    10.1524/ract.2011.1858
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Herzberg;Daniel Cox
  • 通讯作者:
    Daniel Cox
Extending the discrete selection capabilities of the P300 speller to goal-oriented robotic arm control
将 P300 拼写器的离散选择功能扩展到面向目标的机械臂控制
Robot application of a brain computer interface to staubli TX40 robots - early stages
脑机接口在史陶比尔 TX40 机器人中的机器人应用 - 早期阶段
  • DOI:
  • 发表时间:
    2010-12-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas R. Waytowich;Andrew Henderson;D. Krusienski;Daniel Cox
  • 通讯作者:
    Daniel Cox
STAUBLI TX40 ROBOTS -EARLY STAGES
史陶比尔 TX40 机器人 - 早期阶段
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas R. Waytowich;Andrew Henderson;D. Krusienski;Daniel Cox
  • 通讯作者:
    Daniel Cox
University of Birmingham Petrogenesis of plagiogranites in the Muslim Bagh Ophiolite, Pakistan
伯明翰大学巴基斯坦穆斯林巴格蛇绿岩斜长花岗岩的岩石成因
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muslim Bagh;Ophiolite Oceanic;Plagiogranites;Daniel Cox;A. Kerr;A. Hastie;M. I. Kakar
  • 通讯作者:
    M. I. Kakar

Daniel Cox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cox', 18)}}的其他基金

Collaborative Research: Understanding Hybrid Green-Gray Coastal Infrastructure Processes and Performance Uncertainties for Flood Hazard Mitigation
合作研究:了解混合绿灰色沿海基础设施流程和缓解洪水灾害的性能不确定性
  • 批准号:
    2110439
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin 2021-2025
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施2021-2025
  • 批准号:
    2037914
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Cooperative Agreement
Planning Grant: Engineering Research Center for Adaptive and Resilient Coastal Infrastructure (CARCI)
规划资助:适应性和弹性沿海基础设施工程研究中心(CARCI)
  • 批准号:
    1840652
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
  • 批准号:
    1756449
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave, Surge, and Tsunami Overland Hazard, Loading and Structural Response for Developed Shorelines
合作研究:波浪、浪涌和海啸陆上灾害、荷载和已开发海岸线的结构响应
  • 批准号:
    1661315
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施
  • 批准号:
    1519679
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Cooperative Agreement
I-Corps: Hybrid Protein Graphene Electrodes for Supercapacitors
I-Corps:用于超级电容器的混合蛋白石墨烯电极
  • 批准号:
    1620998
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-scale laboratory investigation and numerical modeling of sheet flow sediment transport dynamics across a surf zone sand bar
合作研究:大规模实验室调查和横跨冲浪区沙洲的面流沉积物输运动力学的数值模拟
  • 批准号:
    1356978
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
ICAM - Institute for Complex Adaptive Matter
ICAM - 复杂自适应物质研究所
  • 批准号:
    1411344
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Mechanics and Conditional Probabilities for Prediction of Hurricane Surge and Wave Loads on Elevated Coastal Structures
合作研究:预测飓风潮和高架海岸结构波浪载荷的基本力学和条件概率
  • 批准号:
    1301016
  • 财政年份:
    2013
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似国自然基金

非刚性折叠超材料的设计理论和力学性能研究
  • 批准号:
    52373293
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
复杂薄壁结构的弱刚性时变工艺系统动态响应预测与自适应控制
  • 批准号:
    52375465
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
刚性接触网加速区段的锚段关节异常磨耗机理及其延寿策略研究
  • 批准号:
    52362051
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
刚性兑付预期对金融资源配置的影响及其机制研究——基于债券市场定价效率视角
  • 批准号:
    72302237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
A Comprehensive Program in Rigidity
全面的刚性计划
  • 批准号:
    2247747
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Uniformization and Rigidity in Metric Surfaces and in the Complex Plane
公制曲面和复平面中的均匀化和刚度
  • 批准号:
    2246485
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了