Spectra, gaps, degenerations and cycles

光谱、间隙、简并和循环

基本信息

  • 批准号:
    1201475
  • 负责人:
  • 金额:
    $ 24.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The PIs will continue their foundational work on Homological Mirror Symmetry (HMS), to develop the structures and theories involved in HMS, and to build on applications of these theories. One notable direction is the theory of higher symplectic structures, which brings out the duality between the ``stacky'' directions and the ``derived'' directions of most moduli problems in algebraic geometry. Exploiting the full depth of these structures will require a careful study of the moduli of various kinds of categorical and higher categorical entities. This is one of the main areas of expertise of all the PIs. Kontsevich introduced one of the main tools, derived schemes. Katzarkov came up with the idea that moduli of LG models and its monodromy can be interpreted as stability conditions and spectra.These activities fit into a more general and global philosophy designed to accompany Geometry in the 21st Century. The study of Geometry in the 20th Century was devoted, in large part and with astounding success, to the classification and parametrization of geometrical objects. However,these objects, of various kinds, were uniformly viewed somehow as ``sets of points''. Along the way, the relationship with categorical structures grew steadily, leading to the many inputs into our program as discussed above. The PIs themselves played a pivotal role in much of the progress that was made at the turn of the century. With PI Kontsevich's introduction of HMS, a subtle change was introduced, in that ``Geometry'' began to be seen within a categorical structure. And the concurrent development of the theory of higher stacks meant that geometric structures were no longer viewed just as ``sets of points'' but rather as objects enclosing a higher structure. This project is highly connected with theoretical physics. As we head into the second decade of the 21st Century, elementary particle physics is on the crux of a profound revolution to be brought about by the new experimental results coming out of the LHC at CERN. These will serve to identify which of the multitude of theoretical possibilities which are currently open, best address quantum field theory at the high energy scale. And for those theories, to tell which are the right parameters. So there will soon be a lot of work to do on the theoretical side, and this will surely require new tools and a new approach. With the relationship between HMS and supersymmetric theories, with the relationship between higher categories and TQFT, with the relationship between partition functions and nonabelian cohomology, the kinds of geometrical objects which we are going to investigate in this project are becoming crucial for understanding these new panoramas in theoretical physics. The project has an educational component - conferences and educating postdocs, This component has been hugely successful in the past and with more funding we plan to bring it to the next level.
PI 将继续他们在同源镜像对称 (HMS) 方面的基础工作,开发 HMS 涉及的结构和理论,并以这些理论的应用为基础。一个值得注意的方向是高辛结构理论,它提出了代数几何中大多数模问题的“堆叠”方向和“导出”方向之间的对偶性。充分利用这些结构的深度将需要仔细研究各种分类和更高分类实体的模。这是所有 PI 的主要专业领域之一。 Kontsevich 介绍了主要工具之一:派生方案。 Katzarkov 提出了 LG 模型的模及其一律可以解释为稳定性条件和谱的想法。这些活动符合旨在伴随 21 世纪几何的更普遍和全球性的哲学。 20 世纪的几何研究在很大程度上致力于几何对象的分类和参数化,并取得了惊人的成功。然而,这些不同种类的物体在某种程度上都被统一视为“点集”。一路走来,与分类结构的关系稳步增长,导致我们的程序得到了如上所述的许多输入。 PI 本身在世纪之交取得的许多进展中发挥了关键作用。随着 PI Kontsevich 引入 HMS,引入了微妙的变化,“几何”开始在分类结构中被看到。更高层次理论的同时发展意味着几何结构不再仅仅被视为“点集”,而是被视为包围更高结构的对象。该项目与理论物理密切相关。当我们进入 21 世纪的第二个十年时,基本粒子物理学正处于一场深刻革命的关键,欧洲核子研究中心大型强子对撞机的新实验结果将带来这场革命。这些将有助于确定目前开放的众多理论可能性中哪些最能解决高能尺度的量子场论。对于这些理论,要判断哪些是正确的参数。因此,理论方面很快就会有很多工作要做,这肯定需要新的工具和新的方法。 通过HMS和超对称理论之间的关系,通过高范畴和TQFT之间的关系,通过配分函数和非阿贝尔上同调之间的关系,我们在这个项目中要研究的几何对象的种类对于理解这些新的全景图变得至关重要在理论物理学中。该项目有一个教育部分——会议和教育博士后,这个部分在过去取得了巨大的成功,我们计划通过更多的资金将其提升到一个新的水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ludmil Katzarkov其他文献

Ludmil Katzarkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ludmil Katzarkov', 18)}}的其他基金

FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Categorical Kahler Geometry and Applications
分类卡勒几何及其应用
  • 批准号:
    2001319
  • 财政年份:
    2020
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Conference on Homological Mirror Symmetry
同调镜像对称会议
  • 批准号:
    2001614
  • 财政年份:
    2020
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry Conference Miami 2015
2015 年迈阿密同调镜像对称会议
  • 批准号:
    1502578
  • 财政年份:
    2015
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Categorical Linear Systems
同调镜像对称和分类线性系统
  • 批准号:
    1502162
  • 财政年份:
    2015
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Homological Mirror Symmetry MIAMI, Jan 27- Feb 1, 2014
同调镜像对称迈阿密,2014 年 1 月 27 日至 2 月 1 日
  • 批准号:
    1404779
  • 财政年份:
    2014
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
  • 批准号:
    1265230
  • 财政年份:
    2013
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry Conference Miami
迈阿密同调镜像对称会议
  • 批准号:
    1303069
  • 财政年份:
    2013
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Geometry and Physics Miami - Brazil - Mexico - Conference
几何与物理迈阿密 - 巴西 - 墨西哥 - 会议
  • 批准号:
    1201544
  • 财政年份:
    2012
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Pan American Advanced Studies Institute on Wall Crossing, Stability Hodge Structures and TQFT- Natal, Brazil
泛美跨墙、稳定性 Hodge 结构和 TQFT 高级研究所 - 巴西纳塔尔
  • 批准号:
    1242272
  • 财政年份:
    2012
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant

相似国自然基金

不确定性与核心技术差距双重约束下内需变动对外贸稳定性与韧性的影响研究
  • 批准号:
    72373035
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数字经济、人力资本结构和收入差距:基于企业薪酬调查数据的影响和机制分析
  • 批准号:
    72303041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共同富裕背景下义务教育资源配置对城乡收入差距的影响——基于撤点并校政策的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新发展格局背景下贫富差距对居民消费的影响研究:机制、效应与政策
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于机器学习的收入差距分解方法:相关理论和应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
  • 批准号:
    10110711
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    EU-Funded
Measuring inequality-driven skills gaps in the UK labour market
衡量英国劳动力市场中不平等驱动的技能差距
  • 批准号:
    ES/Z502443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Fellowship
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
  • 批准号:
    DP230103043
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Discovery Projects
Changing Institutions to Mitigate Gender Leadership Gaps: Power of Defaults
改变制度以缩小性别领导差距:违约的力量
  • 批准号:
    DP240101021
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Discovery Projects
Addressing significant product safety knowledge gaps for older Australians
解决澳大利亚老年人在产品安全知识方面的重大差距
  • 批准号:
    DP240101533
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了