II-New: Infrastructure to Support Integrated Research and Education in Socially Intelligent Computing at Missouri S&T

II-新:支持密苏里州社会智能计算综合研究和教育的基础设施

基本信息

项目摘要

The PI's efforts to conduct original and practical research in socially intelligent computing - an emerging and important paradigm centered on integrating people and computers to create new forms of collaboration, communication, and intelligence previously unachievable by humans or computers alone - have been hindered, in scope, scale and quality, by the lack of a dedicated and realistic infrastructure. This proposal requests funds to set up such an infrastructure at the PI's institution, which will support integrated research and education. The infrastructure requested includes high-end computational and storage servers, desktop machines, laptops, smart phones, sensors, cameras, software and accessories for collecting, processing and extracting knowledge from large scale data arising from the daily interactions of society with the Internet and with mobile phones. The overall goal is to utilize the knowledge gained from social computing data to create a spectrum of practical services and applications benefitting society. In particular, three research projects that emphasize the close integrations of society with technology are identified in the proposal: a) Detection of depressive disorders in college settings by mining Internet usage data; b) Human "fingerprinting" by mining Internet and smart phone usage; and c) Tracking humans in the social world by fusing heterogeneous sensor data.Intellectual MeritThe planned research activities are well described and will likely significantly advance the state of the art in socially intelligent computing. The PI has pioneered the mining of real Internet data to detect depressive behavior in college students. His prior research has identified critical Internet usage features that show strong statistical differences between students with and without depressive symptoms. He next plans to design, using computational intelligence techniques, classifiers which can proactively detect depressive behavior in college students with high accuracy while being transparent and preserving privacy. He is also exploring the feasibility of mining Internet usage patterns to fingerprint humans, with applications to Internet forensics and mitigation of insider attacks. Similar techniques will be applied to mine sensor data from smart phones in order to fingerprint mobility patterns and to lay the foundation for a variety of pervasive services. While conventional tracking algorithms leverage either a network of cameras or physical sensory data or electronic signals, the PI plans to pursue an integrated approach that fuses multiple orthogonal data source and which incorporates novel feature extraction and pattern recognition techniques for human tracking in both outdoor and indoor environments.Broader ImpactThis project has applications in diverse areas including mental health screening, insider attack and fraud prevention, phone and vehicle theft detection, participatory sensing etc. Research outcomes will be shared periodically with diverse stakeholders in psychology, law enforcement, forensics, business, etc. The courses taught by the PI and his team in networking, security and computer vision will be enhanced with content deriving from this project, and the infrastructure will help students learn by practical experience. Research findings, learning materials and team experiences will be disseminated periodically to a wide audience (including educators and students in HBCUs and K-12) via conferences and the Web.
PI 在社交智能计算方面进行原创性和实践性研究的努力受到了阻碍,社交智能计算是一种新兴的重要范式,其核心是整合人与计算机,以创建以前仅靠人类或计算机无法实现的新形式的协作、通信和智能。 、规模和质量,由于缺乏专门和现实的基础设施。 该提案要求资金在 PI 机构建立这样的基础设施,以支持综合研究和教育。 所需的基础设施包括高端计算和存储服务器、台式机、笔记本电脑、智能手机、传感器、相机、软件和配件,用于从社会与互联网和社会日常互动产生的大规模数据中收集、处理和提取知识。手机。 总体目标是利用从社交计算数据中获得的知识来创建一系列造福社会的实用服务和应用程序。 提案中特别确定了三个强调社会与技术紧密结合的研究项目: a) 通过挖掘互联网使用数据来检测大学环境中的抑郁症; b) 通过挖掘互联网和智能手机的使用情况来获取人类“指纹”; c) 通过融合异构传感器数据来跟踪社交世界中的人类。智力优点计划中的研究活动得到了很好的描述,并且可能会显着推进社交智能计算的最新技术水平。 PI 率先挖掘真实的互联网数据来检测大学生的抑郁行为。 他之前的研究已经确定了关键的互联网使用特征,这些特征显示出有和没有抑郁症状的学生之间存在显着的统计差异。 他下一步计划使用计算智能技术设计分类器,可以高精度地主动检测大学生的抑郁行为,同时保持透明并保护隐私。 他还在探索挖掘互联网使用模式来识别人类指纹的可行性,并将其应用于互联网取证和减轻内部攻击。 类似的技术将应用于挖掘智能手机的传感器数据,以便识别移动模式并为各种普遍服务奠定基础。 虽然传统的跟踪算法利用摄像头网络或物理传感数据或电子信号,但 PI 计划寻求一种集成方法,融合多个正交数据源,并结合新颖的特征提取和模式识别技术,用于室外和室内的人体跟踪更广泛的影响该项目在多个领域都有应用,包括心理健康筛查、内部攻击和欺诈预防、电话和车辆盗窃检测、参与式传感等。研究成果将定期与心理学、执法、取证、商业、 PI及其团队在网络、安全和计算机视觉方面教授的课程将通过该项目衍生的内容得到加强,基础设施将帮助学生通过实践经验进行学习。 研究结果、学习材料和团队经验将通过会议和网络定期向广大受众(包括 HBCU 和 K-12 的教育工作者和学生)传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Chellappan其他文献

Adaptive Scheduling with Explicit Congestion Notification in a Cyber-Physical Smart Grid System
网络物理智能电网系统中具有显式拥塞通知的自适应调度
Analyzing the secure overlay services architecture under intelligent DDoS attacks
智能DDoS攻击下的安全覆盖服务架构分析
Assessing COVID-19 Impacts on College Students via Automated Processing of Free-form Text
通过自由格式文本的自动处理评估 COVID-19 对大学生的影响
  • DOI:
    10.5220/0010249404590466
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravi Sharma;Srivyshnavi Pagadala;Pratool Bharti;Sriram Chellappan;Trine Schmidt;Raj Goyal
  • 通讯作者:
    Raj Goyal
Peer-to-peer system-based active worm attacks: Modeling, analysis and defense
基于点对点系统的主动蠕虫攻击:建模、分析与防御
  • DOI:
    10.1016/j.comcom.2008.08.008
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Yu;Sriram Chellappan;Xun Wang;D. Xuan
  • 通讯作者:
    D. Xuan
A Multi-tiered Architecture for Content Retrieval in Mobile Peer-to-Peer Networks
移动对等网络中内容检索的多层架构

Sriram Chellappan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Chellappan', 18)}}的其他基金

EAGER: PPER: Collaborative: Cellphone-Enabled Water Citizen Science for Data and Knowledge Generation, and Sharing: WatCitSci
EAGER:PPER:协作:手机支持的水公民科学,用于数据和知识生成和共享:WatCitSci
  • 批准号:
    1743985
  • 财政年份:
    2017
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: A Privacy-Preserving Meta-Data Analysis Framework for Cyber Abuse Research - Foundations, Tools and Algorithms
SaTC:核心:小型:用于网络滥用研究的隐私保护元数据分析框架 - 基础、工具和算法
  • 批准号:
    1718071
  • 财政年份:
    2017
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Continuing Grant
I-Corps: Phone Call Passport-A Smartphone Application to Allow Free Phone Calls
I-Corps:电话通行证 - 允许免费拨打电话的智能手机应用程序
  • 批准号:
    1443188
  • 财政年份:
    2014
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: A Multi-Disciplinary Framework for Modeling Spatial, Temporal and Social Dynamics of Cyber Criminals
EAGER:协作:对网络犯罪分子的空间、时间和社会动态进行建模的多学科框架
  • 批准号:
    1343453
  • 财政年份:
    2013
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 28.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
  • 批准号:
    32370967
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于国人脊柱矢状位序列新分型的腰椎-躯干三维运动研究
  • 批准号:
    82302739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新媒体环境下信息茧房的形成演化机理及破解策略研究
  • 批准号:
    72371026
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
弹性超声预测免疫调节型三阴性乳腺癌新辅助化疗联合免疫治疗的机制研究
  • 批准号:
    82371978
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
新烟碱农药为前体的氯代消毒副产物形成机制与毒性效应研究
  • 批准号:
    42307532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Novel Immunological-Directed Biotherapy for Treating Rheumatoid Arthritis
治疗类风湿关节炎的新型免疫导向生物疗法
  • 批准号:
    10760183
  • 财政年份:
    2023
  • 资助金额:
    $ 28.17万
  • 项目类别:
HCC Ovarian Cancer SPORE
HCC 卵巢癌孢子
  • 批准号:
    10713050
  • 财政年份:
    2023
  • 资助金额:
    $ 28.17万
  • 项目类别:
A multimodal approach for precision immuno-oncoloy in lymphoma treated with CAR-T cells
CAR-T 细胞治疗淋巴瘤的精准免疫肿瘤多模式方法
  • 批准号:
    10722590
  • 财政年份:
    2023
  • 资助金额:
    $ 28.17万
  • 项目类别:
Baseline Data for the Longitudinal Study of Aging
老龄化纵向研究的基线数据
  • 批准号:
    10646567
  • 财政年份:
    2023
  • 资助金额:
    $ 28.17万
  • 项目类别:
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
  • 批准号:
    10721391
  • 财政年份:
    2023
  • 资助金额:
    $ 28.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了