Global dynamics for nonlinear dispersive equations

非线性色散方程的全局动力学

基本信息

  • 批准号:
    1160817
  • 负责人:
  • 金额:
    $ 33.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

This project will investigate the long-term behavior of solutions to dispersive Hamiltonian partial differential equations, such as the semilinear wave, Klein-Gordon, and nonlinear Schroedinger equations. These equations can be either defocusing or focusing, which distinguishes whether the nonlinearity is attractive or repulsive. In the latter case, one typically encounters various regimes depending on the power of the nonlinearity, which allows for rich dynamics ranging from long-term existence and dispersion, to finite-time blowup. Recently, in joint work with Kenji Nakanishi from Kyoto University, Japan, the principal investigator has given a complete characterization of all possible dynamics at energies close to the ground state energy for a large class of these focusing dispersive wave equations. This classification is achieved by a combination of dynamical systems methods (hyperbolic dynamics, invariant manifolds), with partial differential equations arguments such as concentration compactness and the Kenig-Merle theory. Several important open problems remain, among which is to obtain this type of classification for the energy critical nonlinear wave equation. This is particularly relevant in view of the related but complementary research by Duyckaerts-Kenig-Merle on focusing equations. A long-term goal is to establish the soliton-resolution conjecture. This conjecture can be viewed as the nonlinear analogue of the celebrated asymptotic completeness property of the linear Schroedinger evolution. Nonlinear wave equations play a central role in science. Maxwell's equations of electrodynamics are of this type, and they are arguably the most influential partial differential equations of modern science -- the existence of radio waves, and general electromagnetic radiation such as light and X-rays was predicted in the 1870s by Maxwell based on these equations alone and confirmed by experiment later that century. Needless to say, it is unthinkable to remove radio transmission, X-rays, lasers, microwaves, and many other electromagnetic radiation fields from our daily lives. In addition, Maxwell's wave equations have had theoretical impact far beyond anything of which nineteenth-century physicists and mathematicians could have conceived. Indeed, they make the constancy of the speed of light most natural, and the symmetries of Maxwell's system lead directly to Einstein's theory of special relativity. Unifying the latter with gravity then led to the general theory of relativity. In addition, quantum theory has provided many more examples of wave equations, in many cases nonlinear ones. For example, special solutions that go by the name of "dispersion managed solitons," and that solve a certain class of nonlinear Schroedinger equations arising in nonlinear optics, are indispensable today for the transmission of the world's internet traffic through carefully designed glass fiber cables. The introduction of these special cables, which consist of alternating stretches of different materials, drastically reduced transmission errors and cost, and allowed for a huge increase in the data volume being transmitted. This project focuses on the further development and study of nonlinear wave equations of the type that arise in many areas of physics and engineering. Time and time again, mathematicians have laid the foundations through pure research without which the engineering applications that profoundly affect our daily lives could not have been accomplished.
该项目将研究色散哈密顿偏微分方程解的长期行为,例如半线性波、克莱因-戈登方程和非线性薛定谔方程。这些方程可以是散焦的,也可以是聚焦的,这可以区分非线性是吸引还是排斥。在后一种情况下,人们通常会根据非线性的强度遇到各种状态,这允许丰富的动态范围,从长期存在和分散到有限时间爆炸。最近,首席研究员与日本京都大学的 Kenji Nakanishi 合作,对一大类聚焦色散波动方程给出了接近基态能量的所有可能动力学的完整表征。这种分类是通过动力系统方法(双曲动力学、不变流形)与偏微分方程参数(例如浓度紧性和 Kenig-Merle 理论)的组合来实现的。仍然存在几个重要的悬而未决的问题,其中之一是获得能量临界非线性波动方程的这种类型的分类。 鉴于 Duyckaerts-Kenig-Merle 对聚焦方程的相关但互补的研究,这一点尤其重要。 长期目标是建立孤子分辨率猜想。这个猜想可以被视为线性薛定谔演化著名的渐近完整性性质的非线性模拟。非线性波动方程在科学中发挥着核心作用。麦克斯韦电动力学方程就是这种类型,它们可以说是现代科学中最有影响力的偏微分方程——无线电波以及光和X射线等一般电磁辐射的存在是麦克斯韦在1870年代基于这些方程仅在本世纪后期被实验证实。不用说,从我们的日常生活中消除无线电传输、X射线、激光、微波和许多其他电磁辐射场是不可想象的。 此外,麦克斯韦波动方程的理论影响远远超出了十九世纪物理学家和数学家的想象。事实上,它们使光速恒定变得最自然,而麦克斯韦系统的对称性直接导致了爱因斯坦的狭义相对论。将后者与引力相统一就产生了广义相对论。此外,量子理论提供了更多波动方程的例子,在许多情况下是非线性的。例如,名为“色散管理孤子”的特殊解决方案,以及求解非线性光学中出现的某一类非线性薛定谔方程的解决方案,对于当今通过精心设计的玻璃纤维电缆传输世界互联网流量来说是必不可少的。这些由不同材料交替延伸而成的特殊电缆的引入,大大减少了传输错误和成本,并允许传输的数据量大幅增加。该项目的重点是进一步发展和研究物理和工程许多领域中出现的非线性波动方程。数学家一次又一次地通过纯粹的研究奠定了基础,没有这些基础,深刻影响我们日常生活的工程应用就不可能完成。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relaxation of Wave Maps Exterior to a Ball to Harmonic Maps for All Data
  • DOI:
    10.1007/s00039-014-0262-y
  • 发表时间:
    2013-01-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    C. Kenig;A. Lawrie;W. Schlag
  • 通讯作者:
    W. Schlag
Full range of blow up exponents for the quintic wave equation in three dimensions
三维五次波动方程的全范围爆炸指数
Characterization of large energy solutions of the equivariant wave map problem: II
等变波图问题大能量解的表征:II
  • DOI:
    10.1353/ajm.2015.0003
  • 发表时间:
    2015-02-05
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Cote;C. Kenig;A. Lawrie;W. Schlag
  • 通讯作者:
    W. Schlag
The Weber equation as a normal form with applications to top of the barrier scattering
作为范式的韦伯方程应用于势垒顶部散射
  • DOI:
    10.4171/jst/199
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Costin, Rodica;Park, Hyejin;Schlag, Wilhelm
  • 通讯作者:
    Schlag, Wilhelm
Characterization of large energy solutions of the equivariant wave map problem: I
等变波图问题大能量解的表征:I
  • DOI:
    10.1353/ajm.2015.0002
  • 发表时间:
    2012-09-17
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Cote;C. Kenig;A. Lawrie;W. Schlag
  • 通讯作者:
    W. Schlag
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

Global center stable manifold for the defocusing energy critical wave equation with potential
具有势的散焦能量临界波动方程的全局中心稳定流形
  • DOI:
    10.1049/cp.2012.1672
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hao Jia;Baoping Liu;Wilhelm Schlag;Guixiang Xu
  • 通讯作者:
    Guixiang Xu
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
Non-perturbative localization for quasi-periodic Jacobi block matrices
准周期雅可比块矩阵的非微扰定位
Invariant Manifolds and Dispersive Hamiltonian Evolution Equations
不变流形和色散哈密顿演化方程
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenji Nakanishi;Wilhelm Schlag
  • 通讯作者:
    Wilhelm Schlag
Asymptotic stability of the sine-Gordon kink under odd perturbations
奇数扰动下正弦戈登扭结的渐近稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jonas Lührmann;Wilhelm Schlag
  • 通讯作者:
    Wilhelm Schlag

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0617854
  • 财政年份:
    2005
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
  • 批准号:
    0241930
  • 财政年份:
    2002
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant

相似国自然基金

面向光信息防护的光纤光学视界下非线性孤子碰撞动力学研究
  • 批准号:
    62375080
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有竞争特征的非线性积分微分方程的动力学研究
  • 批准号:
    12371174
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
模型与数据驱动的高维非线性结构降维方法及索/梁动力学应用
  • 批准号:
    12372007
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
电驱动系统多场耦合机理与非线性动力学特性解析建模方法
  • 批准号:
    52375105
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
运动边界激励下柔细管道动力学建模及非线性响应机理
  • 批准号:
    12302028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Discovery Grants Program - Individual
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
  • 批准号:
    19KK0373
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
  • 批准号:
    RGPIN-2019-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了