Surface-level investigations of adsorbate-adsorbate interactions on thiolate-modified surfaces
硫醇盐改性表面吸附质-吸附质相互作用的表面研究
基本信息
- 批准号:1160040
- 负责人:
- 金额:$ 30.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of designing catalyst sites to achieve high selectivity to desired products is one of the central goals of current research in heterogeneous catalysis. This objective can be particularly challenging in reactions of molecules which possess multiple functional groups, and where each functional group can interact with the catalytic surface and undergo reaction. A good example is the conversion of biomass to fuels and chemicals. Biomass-derived carbohydrates and lipids are highly oxygenated compounds that generally contain multiple functional groups (e.g., alcohols, carboxylic acids, esters, olefins, ethers, aldehydes, and ketones) on each molecule. The ability to selectively drive a specific reaction of a single functional group in such molecules is important, particularly for generating high value coproducts to fuels. Unfortunately, achieving this high selectivity on conventional supported metal catalysts is greatly complicated, as all of the key functional groups can adsorb and react on the Pt-group metals in many catalysts. Professor J. William Medlin at the University of Colorado at Boulder proposes a different approach. He seeks to design novel catalysts for high selectivity with biological catalysts (enzymes) in mind. Enzyme catalysts exploit non-covalent interactions within binding pockets to control chemical transformations, resulting in unsurpassed selectivity, even with multifunctional reactant molecules. One approach therefore for improving the selectivity of metal surfaces is to create a near-surface environment (NSE) that fosters selective interactions of reagents with surfaces, mimicing an enzyme pocket. These NSEs can be created through attachment of organic ligands to the surface. Variations on this concept have been used in generating chiral binding pockets on Pt-group surfaces in other research. These efforts to modify catalytic surfaces sought to exploit interaction between reactants and isolated covalently-attached surface ligands. The PI proposes to use well-organized molecular surface layers to create uniform and/or stratified NSEs, much like in biomembranes. Medlin has proven the concept with highly selective Pd catalysts involving the deposition of n-alkanethiol self-assembled monolayer (SAM) coatings with dramatic improvement of the selectivity (11 to 94%) of 1-epoxybutane formation from hydrogenation of 1-epoxy-3-butene. Medlin's proposal extends the investigation of how interactions between adsorbates and other molecules in the NSE alter the reactivity of metal surfaces, with the hypothesis being that by controlling interactions between adsorbates and the NSE, it is possible to control the adsorption geometry and subsequent reactivity of important reagents. To control the NSE, deposition on metal surfaces of organic thiol SAMs selected from a rich catalog of molecules and chemistries will be employed. Many possible demonstration reactions will be considered to evaluate the effects.The PhD student conducting the research will benefit from a proposed international research component including beam time at the Swiss Federal Institute of Technology in Zurich. Undergraduate students will conduct independent research on small-scale projects that build on the research of PhD student. Outreach activities will be organized through existing programs in which Medlin is active, including those promoted by the Renewable Energy Materials Research Science and Engineering Center, the Colorado Center for Biorefining and Biofuels, and the Renewable and Sustainable Energy Institute.
设计催化剂位点以实现对所需产物的高选择性的目标是当前多相催化研究的中心目标之一。这一目标在具有多个官能团的分子的反应中尤其具有挑战性,并且其中每个官能团可以与催化表面相互作用并发生反应。一个很好的例子是将生物质转化为燃料和化学品。生物质衍生的碳水化合物和脂质是高含氧化合物,每个分子上通常含有多个官能团(例如醇、羧酸、酯、烯烃、醚、醛和酮)。选择性驱动此类分子中单个官能团发生特定反应的能力非常重要,特别是对于生成高价值燃料副产品而言。不幸的是,在传统的负载型金属催化剂上实现这种高选择性非常复杂,因为许多催化剂中所有关键官能团都可以吸附铂族金属并在其上反应。科罗拉多大学博尔德分校的 J. William Medlin 教授提出了一种不同的方法。他寻求设计具有生物催化剂(酶)高选择性的新型催化剂。酶催化剂利用结合袋内的非共价相互作用来控制化学转化,从而产生无与伦比的选择性,即使对于多功能反应物分子也是如此。因此,提高金属表面选择性的一种方法是创建近表面环境(NSE),模拟酶袋,促进试剂与表面的选择性相互作用。这些 NSE 可以通过将有机配体附着到表面来产生。在其他研究中,这一概念的变体已被用于在 Pt 基团表面上生成手性结合袋。这些修饰催化表面的努力试图利用反应物和分离的共价连接的表面配体之间的相互作用。 PI 建议使用组织良好的分子表面层来创建均匀和/或分层的 NSE,就像生物膜一样。 Medlin 已经用高选择性 Pd 催化剂证明了这一概念,涉及正烷硫醇自组装单层 (SAM) 涂层的沉积,显着提高了 1-epoxy-3 氢化形成 1-环氧丁烷的选择性(11% 至 94%) -丁烯。 Medlin 的提议扩展了对 NSE 中吸附物和其他分子之间的相互作用如何改变金属表面反应性的研究,假设通过控制吸附物和 NSE 之间的相互作用,可以控制重要物质的吸附几何形状和随后的反应性。试剂。为了控制 NSE,将采用从丰富的分子和化学物质中选择的有机硫醇 SAM 在金属表面上的沉积。将考虑许多可能的示范反应来评估效果。进行这项研究的博士生将受益于拟议的国际研究部分,包括苏黎世瑞士联邦理工学院的光束时间。本科生将在博士生研究的基础上进行小型项目的独立研究。外展活动将通过梅德林积极参与的现有计划来组织,包括由可再生能源材料研究科学与工程中心、科罗拉多州生物精炼和生物燃料中心以及可再生和可持续能源研究所推动的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Will Medlin其他文献
Incorporating ScreenCasts into Chemical Engineering Courses
将 ScreenCast 纳入化学工程课程
- DOI:
10.18260/1-2--18130 - 发表时间:
2011-06-26 - 期刊:
- 影响因子:0
- 作者:
J. L. D. Grazia;J. Falconer;G. Nicodemus;Will Medlin - 通讯作者:
Will Medlin
Reaction paths for hydrodeoxygenation of furfuryl alcohol at TiO2/Pd interfaces
TiO2/Pd 界面糠醇加氢脱氧反应路径
- DOI:
10.1016/j.jcat.2019.07.012 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:7.3
- 作者:
Shyam Deo;Will Medlin;E. Nikolla;M. Janik - 通讯作者:
M. Janik
Will Medlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Will Medlin', 18)}}的其他基金
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349884 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Continuing Grant
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
- 批准号:
2218958 - 财政年份:2022
- 资助金额:
$ 30.75万 - 项目类别:
Continuing Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
- 批准号:
2132033 - 财政年份:2021
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Catalytic Selectivity Control in Electrochemical Systems using Self-Assembled Monolayers
使用自组装单层膜控制电化学系统中的催化选择性
- 批准号:
2004090 - 财政年份:2020
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Modification of zeolites with organic ligands for improved separations
用有机配体对沸石进行改性以改善分离
- 批准号:
1916738 - 财政年份:2019
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
1900183 - 财政年份:2019
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Surface Reaction of Oxygenates on Lewis Acidic Metal Oxides
SusChEM:合作研究:路易斯酸性金属氧化物上氧化物的表面反应
- 批准号:
1705500 - 财政年份:2017
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
SusChEM: Surface Active Site Design for Selective Deoxygenation
SusChEM:用于选择性脱氧的表面活性位点设计
- 批准号:
1464979 - 财政年份:2015
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436862 - 财政年份:2014
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Understanding and Controlling Reactivity of Functionalized Alcohols on Metal Surfaces
了解和控制金属表面官能化醇的反应性
- 批准号:
1149752 - 财政年份:2012
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
相似国自然基金
钙稳态失衡引起蛋鸡等级前卵泡闭锁及其机制的研究
- 批准号:32372953
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单色光通过m6A修饰circNTRK2调控miR-205b/StAR轴影响鸽等级卵泡选择的机制研究
- 批准号:32372875
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
甲烷干重整等级孔泡沫反应器中对流传热与辐射传热协同强化机制研究
- 批准号:22308058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
食用真菌细胞核等级秩序及其分子调控机制的研究
- 批准号:32372789
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型实用化量子密码协议的高安全等级理论分析
- 批准号:12374473
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
How does higher level cognition affect emotion? Neurophysiological and behavioral investigations
更高层次的认知如何影响情绪?
- 批准号:
RGPIN-2019-06384 - 财政年份:2022
- 资助金额:
$ 30.75万 - 项目类别:
Discovery Grants Program - Individual
How does higher level cognition affect emotion? Neurophysiological and behavioral investigations
更高层次的认知如何影响情绪?
- 批准号:
RGPIN-2019-06384 - 财政年份:2022
- 资助金额:
$ 30.75万 - 项目类别:
Discovery Grants Program - Individual
How does higher level cognition affect emotion? Neurophysiological and behavioral investigations
更高层次的认知如何影响情绪?
- 批准号:
RGPIN-2019-06384 - 财政年份:2021
- 资助金额:
$ 30.75万 - 项目类别:
Discovery Grants Program - Individual
How does higher level cognition affect emotion? Neurophysiological and behavioral investigations
更高层次的认知如何影响情绪?
- 批准号:
RGPIN-2019-06384 - 财政年份:2021
- 资助金额:
$ 30.75万 - 项目类别:
Discovery Grants Program - Individual
How does higher level cognition affect emotion? Neurophysiological and behavioral investigations
更高层次的认知如何影响情绪?
- 批准号:
RGPAS-2019-00025 - 财政年份:2020
- 资助金额:
$ 30.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements