Finite-amplitude Eddy-mean Flow Interaction in the Extratropical Atmosphere

温带大气中的有限振幅涡均流相互作用

基本信息

  • 批准号:
    1151790
  • 负责人:
  • 金额:
    $ 56.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

The mutual interaction between eddies (such as those associated with midlatitude weather systems) and the mean flow (midlatitude jet streams, in particular) is a longstanding topic in atmospheric general circulation. It is clear that jet streams and eddies interact strongly, but traditional theories to account for their interaction are limited because, for mathematical reasons, they assume that the eddies are small-amplitude perturbations of the mean flow. The Principal Investigator (PI) has developed a theory of eddy-mean flow interaction which works for large-amplitude eddies, and work conducted under the award seeks to explore the implications of this new theory. The new theory will be applied to 1) evaluate nonconservative driving of the climate state (radiative forcing, friction, mixing, etc.) by carefully documenting and analyzing the slowly varying reference state; 2) quantify the stabilizing effects of baroclinic eddies ("baroclinic adjustment") by comparing the linear stability of the observed zonal-mean time-mean state and that of an eddy-free reference state derived from the theory; 3) characterize annular mode variability as co-variation of the zonal-mean zonal-wind and wave activity density, and in turn associate it with the variation in the zonal phase speed and energy of the eddies; 4) generalize the criterion for the onset of Rossby wave breaking and testing this theoretical prediction with numerical simulation and meteorological reanalysis; and 5) further generalize the wave breaking criterion for zonally varying mean flows.The broader impacts of this activity are that the eddy-mean flow theory and the diagonstic tools derived from it can be applied to a wide class of flows, including the stratosphere, troposphere, and the oceans. In addition, the project will support and train two graduate students, thereby developing the scientific workforce in this area. Results of the research will also be incorporated into demonstrations performed by the PI in his fluid dynamics laboratory, for audiences at the graduate, undergraduate, and high school levels.
涡流(例如与中纬度天气系统相关的涡流)与平均流动(尤其是中纬度喷射流有关的涡流)之间的相互作用是大气一般循环中的一个长期话题。 显然,喷气流和涡流相互作用很强,但是解释其相互作用的传统理论是有限的,因为出于数学原因,他们认为涡流是平均流量的小振幅扰动。 首席研究员(PI)开发了一种涡流流相互作用的理论,该理论适用于大振幅涡流,并根据该奖项进行的工作旨在探索这种新理论的含义。 新理论将应用于1)评估气候状态的非保守驾驶(辐射强迫,摩擦,混合等),通过仔细记录和分析缓慢变化的参考状态; 2)通过比较观察到的层次均值时态态的线性稳定性和源自该理论的无涡流参考状态的线性稳定性,量化斜压涡流(“斜压调节”)的稳定作用; 3)将环形模式变异性表征为Zonal均值Zonal-Wind和波浪活性密度的共同变化,然后将其与涡流相位速度和涡流的零相速度和能量的变化相关联; 4)概括了通过数值模拟和气象重新分析的理论预测的Rossby Wave Breaking和测试的标准; 5)进一步概括了碎区变化平均流的波浪破坏标准。该活动的更广泛的影响是,涡流流程理论和从其的对角线工具可以应用于一类宽类的流,包括平流层,对流层和海洋。 此外,该项目将支持和培训两名研究生,从而在该领域发展科学劳动力。 这项研究的结果还将被纳入PI在其流体动力学实验室中进行的示范,毕业生,本科和高中级别的观众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Noboru Nakamura其他文献

Fire Retardancy of Fire-retardant-impregnated Wood after Natural Weathering II.
自然风化后阻燃剂浸渍木材的阻燃性能 II.
  • DOI:
    10.2488/jwrs.66.31
    10.2488/jwrs.66.31
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Masayuki Kawarasaki;Ryoichi Hiradate;Y. Hirabayashi;S. Kikuchi;Y. Ohmiya;Jaeyoung Lee;Masaki Noaki;Noboru Nakamura
    Masayuki Kawarasaki;Ryoichi Hiradate;Y. Hirabayashi;S. Kikuchi;Y. Ohmiya;Jaeyoung Lee;Masaki Noaki;Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
    Noboru Nakamura
GEOMETRIC OPERATOR MEAN INDUCED FROM THE RICCATI EQUATION
由Riccati方程推导的几何算子平均值
  • DOI:
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noboru Nakamura
    Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
    Noboru Nakamura
GEOMETRIC MEANS OF POSITIVE OPERATORS II
正算子的几何均值 II
ELEMENTARY PROOFS OF OPERATOR MONOTONICITY OF SOME FUNCTIONS
某些函数算子单调性的基本证明
Proofs of operator monotonicity of some functions by using Lowner's integral representation
使用 Lowner 积分表示证明某些函数的算子单调性
  • DOI:
  • 发表时间:
    2014
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noboru Nakamura
    Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
    Noboru Nakamura
共 9 条
  • 1
  • 2
前往

Noboru Nakamura的其他基金

Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
  • 批准号:
    2406927
    2406927
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Quantifying Sources and Sinks of Rossby Wave Activity in the Atmosphere
量化大气中罗斯贝波活动的源和汇
  • 批准号:
    2154523
    2154523
  • 财政年份:
    2022
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Large Wave Events in a Changing Climate
气候变化中的大波浪事件
  • 批准号:
    1909522
    1909522
  • 财政年份:
    2019
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Rossbypalooza 2018: A Student-led Workshop on Understanding Climate through Simple Models; Chicago, Illinois; June 11-23, 2018
Rossbypalooza 2018:由学生主导的通过简单模型了解气候的研讨会;
  • 批准号:
    1810964
    1810964
  • 财政年份:
    2018
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
"Rossbypalooza", A Student-led Workshop at the Interface of Climate Dynamics and Statistics; Chicago, Illinois; July 25-29, 2016
“Rossbypalooza”,由学生主导的气候动力学与统计接口研讨会;
  • 批准号:
    1603336
    1603336
  • 财政年份:
    2016
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Wave Activity Budget and the Variabilities of the Extratropical Climate
波浪活动预算和温带气候的变化
  • 批准号:
    1563307
    1563307
  • 财政年份:
    2016
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Eddy-Jet Interaction and Climate
涡流喷射相互作用和气候
  • 批准号:
    0750916
    0750916
  • 财政年份:
    2008
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Workshop on Teaching Weather and Climate Using Laboratory Experiments; Chicago, IL; Summer 2008
利用实验室实验进行天气和气候教学讲习班;
  • 批准号:
    0744095
    0744095
  • 财政年份:
    2008
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Theoretical and Numerical Investigations of the Earth's Midlatitude Tropopause
地球中纬度对流层顶的理论和数值研究
  • 批准号:
    0230903
    0230903
  • 财政年份:
    2003
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Standard Grant
    Standard Grant
Annual and Interannual Variabilities in the Kinematics and Dynamics of the Polar Stratosphere
极地平流层运动学和动力学的年度和年际变化
  • 批准号:
    9980676
    9980676
  • 财政年份:
    2000
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

气候模式中海表温度日变化振幅对ENSO模拟的影响研究
  • 批准号:
    42376033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大振幅盾牌座delta型变星的精确星震学研究
  • 批准号:
    12303036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
VTI介质球面反射波振幅、相位频变机理及联合反演方法研究
  • 批准号:
    42304112
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
振幅干涉与北京谱仪上Y(4230)研究
  • 批准号:
    12375083
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
Rayleigh槽波振幅深度分布规律及垂向测深能力研究
  • 批准号:
    42304152
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Continuing Grant
    Continuing Grant
複素スペクトル領域での振幅位相関係に基づく新たな音響信号処理の創出
基于复谱域中的幅相关系创建新的声学信号处理
  • 批准号:
    24K20838
    24K20838
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
独立性と振幅位相モデルに基づく音源分離の数理的深化及びマルチモーダル補聴器開発
基于独立性和幅相模型的声源分离数学深化及多模态助听器开发
  • 批准号:
    23K24908
    23K24908
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
山越え気流に生じる大振幅変動
山区气流发生大幅波动
  • 批准号:
    23K25936
    23K25936
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
  • 批准号:
    24K07332
    24K07332
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)