CAREER: A Multi-Scale Approach to Assessment of Climate Change Impacts on Hydrologic and Geomorphic Response of Watershed Systems within an Uncertainty Framework

职业:在不确定性框架内评估气候变化对流域系统水文和地貌响应影响的多尺度方法

基本信息

项目摘要

The current ways of assessing the impacts of climate change on watershed systems are inadequate: they are based on ad hoc selection of climate models; they focus on metrics at very coarse scales detached from the reality of human activities and ecosystem services at the local (often the stream reach or floodplain) scales; and they do not yield any assessment of uncertainty associated with watershed modeling and projections into the future. This research will bridge the multi-scale, space-time connectivity of watershed systems and address uncertainty associated with their predictions through a comprehensive program of inter-disciplinary modeling and field observations and outdoor, lecture, and lab educational activities. The project will focus on the state of Michigan, where a number of observed metrics already demonstrate trends consistent with a warming climate, including shorter winters, higher mean annual temperatures, and higher frequency of heavy precipitation events. In the research component of the project, a number of case studies will be developed throughout the state along the south-southeast ? north-northwest climatic, hydrologic, and agricultural activities gradient. In addition to a synthesis of a large array of existing data sets, in situ monitoring of climatic forcing and characteristics of flow regime will be carried out to provide data for model evaluation. Multi-model ensembles of climate change projections from the World Climate Research Programme's Coupled Model Intercomparison Project will be downscaled using ?fossil-intensive?, ?mid-?, and ?lower-level? future emission scenarios of carbon dioxide (defined according to the Intergovernmental Panel on Climate Change). The inferred probabilistic information will be used to assess climate change impacts on watershed systems for early (2010?2039), mid- (2040?2069), and late century (2070?2099) periods. Specifically, changes in essential characteristics of hydrological and hydrodynamic regimes will be investigated for the case study basins using a multi-scale, physically-based framework of modeling watershed surface/subsurface processes and flow hydrodynamics, integrated through a capability of Nested Dynamics Modeling. The total uncertainty associated with biases of climate projections and inaccuracies of a watershed model will be quantified. An extensive data set of downscaled climate projections and outputs of hydrologic and hydrodynamic modeling generated in this research will provide a comprehensive volume of information required in climate change compensation and mitigation planning. The outreach component of the project will implement educational activities focusing to enhance the science class program of 7th graders in Title I schools and increase awareness of the consequences of human activities on watershed processes. The emphasis of educational activities of a week-long summer-school will be placed on underserved and underrepresented groups of students of Native American youth of Michigan, Wisconsin, and Minnesota tribes. Through the integration of research and outreach programs, the project will benefit the hydrological sciences community, middle-school, undergraduate, and graduate students.Global climate models are the tools used for exploring how earth?s climate will evolve in future under different scenarios of human activity. Outputs of these models are used in climate impact studies. The typical applications of these studies concern large-scale hydrologic variables for areas of hundreds-to-thousands of square miles; very rarely they can provide the associated uncertainty; currently, there are no studies that can address future impacts on flow hydrodynamic characteristics or floodplain inundation. Yet, most of climate change compensation and mitigation strategies require information that is relevant to scales of human activities and ecosystem services, which typically focus on watersheds, streams, agricultural fields, etc. They also require an estimate of uncertainty associated with projection into the future to make better informed decisions in conditions of climate projection inaccuracies. Responding to these societal needs, this research will use maximum available information on climate change in the form of multi-model projections and develop methodologies that will infer uncertainty of climate change predictions. In contrast to previous studies, the project will synthesize a range of hydrologic/hydrodynamic models and observational data to create capabilities for propagating information on climate signals through the entire watershed system: from headwater (source) areas to stream channels, and to the details of flow characteristics. To ensure that the issues of model applications are addressed specifically and that research findings make a practical impact, case studies will be developed throughout the state of Michigan. Furthermore, this CAREER project will integrate educational activities focusing to enhance the science class program of underserved/underrepresented student groups (low income families and Native Americans) targeting to empower their mind-sets to become future leaders and pursue science and engineering as their career choices
目前评估气候变化对流域系统影响的方法是不够的:它们基于气候模型的临时选择;他们关注的是非常粗略尺度的指标,脱离了当地(通常是河流河段或洪泛区)尺度的人类活动和生态系统服务的现实;并且它们不会对与分水岭建模和未来预测相关的不确定性进行任何评估。这项研究将通过跨学科建模和现场观察以及户外、讲座和实验室教育活动的综合计划,弥合流域系统的多尺度、时空连通性,并解决与其预测相关的不确定性。该项目将重点关注密歇根州,该州的许多观测指标已经显示出与气候变暖相一致的趋势,包括冬季较短、年平均气温较高以及强降水事件发生频率较高。在该项目的研究部分,将在整个州东南偏南地区开展一些案例研究?西北偏北的气候、水文和农业活动梯度。除了综合大量现有数据集外,还将对气候强迫和流态特征进行现场监测,为模型评估提供数据。世界气候研究计划耦合模型比较项目的气候变化预测的多模型集合将使用“化石密集型”、“中级”和“低级”来缩小规模。未来二氧化碳排放情景(根据政府间气候变化专门委员会定义)。推断的概率信息将用于评估本世纪早期(2010年?2039年)、中期(2040年?2069年)和晚期(2070年?2099年)气候变化对流域系统的影响。具体而言,将使用多尺度、基于物理的流域地表/地下过程和水流动力学建模框架,通过嵌套动力学建模功能进行集成,研究案例研究流域的水文和水动力状况基本特征的变化。与气候预测偏差和流域模型不准确相关的总体不确定性将被量化。本研究中生成的缩小规模气候预测以及水文和水动力模型输出的广泛数据集将提供气候变化补偿和缓解规划所需的全面信息。该项目的外展部分将实施教育活动,重点是加强第一类学校七年级学生的科学课程计划,并提高人们对人类活动对流域过程的影响的认识。为期一周的暑期学校教育活动的重点将放在密歇根州、威斯康星州和明尼苏达州部落中服务不足和代表性不足的美国原住民青年学生群体。通过研究和推广项目的整合,该项目将使水文科学界、中学生、本科生和研究生受益。全球气候模型是用于探索未来地球气候在不同情景下如何演变的工具。人类活动。这些模型的输出用于气候影响研究。这些研究的典型应用涉及数百至数千平方英里区域的大规模水文变量;他们很少能够提供相关的不确定性;目前,还没有研究可以解决未来对水流水动力特性或洪泛区洪水的影响。然而,大多数气候变化补偿和减缓战略需要与人类活动和生态系统服务规模相关的信息,这些信息通常侧重于流域、溪流、农田等。它们还需要对与未来预测相关的不确定性进行估计在气候预测不准确的情况下做出更明智的决策。为了满足这些社会需求,本研究将以多模型预测的形式利用有关气候变化的最大可用信息,并开发推断气候变化预测不确定性的方法。与之前的研究相比,该项目将综合一系列水文/水动力模型和观测数据,以创建在整个流域系统中传播气候信号信息的能力:从水源(源)区域到河道,再到流域的详细信息。流动特性。为了确保模型应用的问题得到具体解决,并确保研究结果产生实际影响,将在整个密歇根州开展案例研究。此外,该职业项目将整合教育活动,重点是加强服务不足/代表性不足的学生群体(低收入家庭和美洲原住民)的科学课程计划,旨在增强他们的思维方式,成为未来的领导者,并将科学和工程作为他们的职业选择

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valeriy Ivanov其他文献

Hydraulic traits explain differential responses of Amazonian forests to the 2015 El 15 Nino-induced drought 16
水力特征解释了亚马逊森林对 2015 年厄尔尼诺现象引起的干旱 15 的差异反应 16
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fernanda V. Barros;P.R.L. Bittencourt;M. Brum;;17;Coupe;Luciano Pereira;G. Teodoro;S. Saleska;L. Borma;B. Christoffersen;D. Penha;Luciana F. Alves;Adriano J. N. Lima;V. Carneiro;P. Gentine;Jung;L. E. Aragão;Valeriy Ivanov;Leila S. M. Leal;Alessandro C. Araújo;Rafael S. Oliveira
  • 通讯作者:
    Rafael S. Oliveira

Valeriy Ivanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valeriy Ivanov', 18)}}的其他基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
  • 批准号:
    2053429
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NNA Research: Interactions of natural and social systems with climate change, globalization, and infrastructure development in the Arctic
合作研究:NNA 研究:自然和社会系统与气候变化、全球化和北极基础设施发展的相互作用
  • 批准号:
    2126792
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
  • 批准号:
    2111028
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
NNA Track 2: Collaborative Research: Interactions of environmental and land surface change, animals, infrastructure, and peoples of the Arctic
NNA 轨道 2:合作研究:环境和地表变化、动物、基础设施和北极人民的相互作用
  • 批准号:
    1928014
  • 财政年份:
    2019
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Are Amazon forest trees source or sink limited? Mapping hydraulic traits to carbon allocation strategies to decipher forest function during drought
合作研究:亚马逊森林树木的来源或汇是否有限?
  • 批准号:
    1754163
  • 财政年份:
    2018
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Hydrologic and Permafrost Changes Due to Tree Expansion into Tundra
合作研究:树木扩展到苔原导致的水文和永久冻土变化
  • 批准号:
    1725654
  • 财政年份:
    2017
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative research: Linking Heterogeneity of Above-Ground and Subsurface Processes at the Gap-Canopy Patch Scales to Ecosystem Level Dynamics
合作研究:将间隙冠层斑块尺度的地上和地下过程的异质性与生态系统水平动态联系起来
  • 批准号:
    0911444
  • 财政年份:
    2009
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant

相似国自然基金

大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于多源知识融合的大规模定日镜集群主动协同优化控制方法
  • 批准号:
    62373067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于模块化多电平换流器技术的大规模锂电储能系统能量管控理论与方法研究
  • 批准号:
    62303017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模多层次低轨星座构型设计及捷变通感多波束技术研究
  • 批准号:
    62371054
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
  • 批准号:
    2338386
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了