CAREER: A Multi-Scale Approach to Assessment of Climate Change Impacts on Hydrologic and Geomorphic Response of Watershed Systems within an Uncertainty Framework

职业:在不确定性框架内评估气候变化对流域系统水文和地貌响应影响的多尺度方法

基本信息

项目摘要

The current ways of assessing the impacts of climate change on watershed systems are inadequate: they are based on ad hoc selection of climate models; they focus on metrics at very coarse scales detached from the reality of human activities and ecosystem services at the local (often the stream reach or floodplain) scales; and they do not yield any assessment of uncertainty associated with watershed modeling and projections into the future. This research will bridge the multi-scale, space-time connectivity of watershed systems and address uncertainty associated with their predictions through a comprehensive program of inter-disciplinary modeling and field observations and outdoor, lecture, and lab educational activities. The project will focus on the state of Michigan, where a number of observed metrics already demonstrate trends consistent with a warming climate, including shorter winters, higher mean annual temperatures, and higher frequency of heavy precipitation events. In the research component of the project, a number of case studies will be developed throughout the state along the south-southeast ? north-northwest climatic, hydrologic, and agricultural activities gradient. In addition to a synthesis of a large array of existing data sets, in situ monitoring of climatic forcing and characteristics of flow regime will be carried out to provide data for model evaluation. Multi-model ensembles of climate change projections from the World Climate Research Programme's Coupled Model Intercomparison Project will be downscaled using ?fossil-intensive?, ?mid-?, and ?lower-level? future emission scenarios of carbon dioxide (defined according to the Intergovernmental Panel on Climate Change). The inferred probabilistic information will be used to assess climate change impacts on watershed systems for early (2010?2039), mid- (2040?2069), and late century (2070?2099) periods. Specifically, changes in essential characteristics of hydrological and hydrodynamic regimes will be investigated for the case study basins using a multi-scale, physically-based framework of modeling watershed surface/subsurface processes and flow hydrodynamics, integrated through a capability of Nested Dynamics Modeling. The total uncertainty associated with biases of climate projections and inaccuracies of a watershed model will be quantified. An extensive data set of downscaled climate projections and outputs of hydrologic and hydrodynamic modeling generated in this research will provide a comprehensive volume of information required in climate change compensation and mitigation planning. The outreach component of the project will implement educational activities focusing to enhance the science class program of 7th graders in Title I schools and increase awareness of the consequences of human activities on watershed processes. The emphasis of educational activities of a week-long summer-school will be placed on underserved and underrepresented groups of students of Native American youth of Michigan, Wisconsin, and Minnesota tribes. Through the integration of research and outreach programs, the project will benefit the hydrological sciences community, middle-school, undergraduate, and graduate students.Global climate models are the tools used for exploring how earth?s climate will evolve in future under different scenarios of human activity. Outputs of these models are used in climate impact studies. The typical applications of these studies concern large-scale hydrologic variables for areas of hundreds-to-thousands of square miles; very rarely they can provide the associated uncertainty; currently, there are no studies that can address future impacts on flow hydrodynamic characteristics or floodplain inundation. Yet, most of climate change compensation and mitigation strategies require information that is relevant to scales of human activities and ecosystem services, which typically focus on watersheds, streams, agricultural fields, etc. They also require an estimate of uncertainty associated with projection into the future to make better informed decisions in conditions of climate projection inaccuracies. Responding to these societal needs, this research will use maximum available information on climate change in the form of multi-model projections and develop methodologies that will infer uncertainty of climate change predictions. In contrast to previous studies, the project will synthesize a range of hydrologic/hydrodynamic models and observational data to create capabilities for propagating information on climate signals through the entire watershed system: from headwater (source) areas to stream channels, and to the details of flow characteristics. To ensure that the issues of model applications are addressed specifically and that research findings make a practical impact, case studies will be developed throughout the state of Michigan. Furthermore, this CAREER project will integrate educational activities focusing to enhance the science class program of underserved/underrepresented student groups (low income families and Native Americans) targeting to empower their mind-sets to become future leaders and pursue science and engineering as their career choices
当前评估气候变化对流域系统的影响的方式不足:它们基于气候模型的临时选择;他们专注于非常粗糙的规模的指标,这些指标与当地的人类活动和生态系统服务的现实(通常是河流范围或洪泛区)量表分离。而且它们不会对与未来的​​流域建模和预测相关的不确定性进行任何评估。这项研究将弥合流域系统的多尺度,时空连通性,并通过全面的跨学科建模和现场观察和户外,讲座和实验室教育活动来解决与其预测相关的不确定性。该项目将集中于密歇根州,在密歇根州,许多观察到的指标已经证明了与温暖气候一致的趋势,包括较短的冬季,较高的平均年温度和较高的重降水频率。在该项目的研究部分中,整个州沿南北沿线将开发许多案例研究?北 - 北方气候,水文和农业活动渐变。除了综合一系列现有数据集之外,还将进行气候强迫和流程特征的原位监视以提供模型评估的数据。来自世界气候研究计划的气候变化预测的多模型组合将使用“化石密集型”?中的耦合模型对比项目进行缩减?二氧化碳的未来排放场景(根据气候变化的政府间小组定义)。推断的概率信息将用于评估早期(2010年2039年),中期(2040年?2069年)和世纪后期(2070?2099年)期间对流域系统的气候变化影响。具体而言,将使用基于物理的,基于物理的基于物理的基于物理的框架来对水文和流体动力学制度的基本特征的变化进行研究,该框架通过嵌套动力学建模的能力来集成了分水岭表面/地下过程和流动流体动力学。将量化与气候预测和流域模型不准确的偏见相关的总不确定性。本研究中生成的水文和流体动力建模的缩小缩放的气候预测和输出的广泛数据集将提供气候变化补偿和缓解计划所需的全面信息。该项目的外展部分将实施重点的教育活动,以增强第I学校中7年级的科学课程计划,并提高人们对人类活动在流域过程中的后果的认识。为期一周的夏季学校的教育活动的重点将放在密歇根州,威斯康星州和明尼苏达州部落的美国原住民青年学生的服务不足和代表性不足的群体上。通过研究和外展计划的整合,该项目将使水文科学社区,中学,本科生和研究生受益。全球气候模型是用于探索地球气候在未来在人类活动的不同情况下如何发展的工具。这些模型的输出用于气候影响研究。这些研究的典型应用涉及数十万平方英里的区域的大规模水文变量;他们很少能提供相关的不确定性;当前,尚无研究能够解决对流量流体动力特征或洪泛区淹没的未来影响。然而,大多数气候变化补偿和缓解策略都需要与人类活动和生态系统服务量表相关的信息,这些信息通常着重于分水岭,溪流,农业领域等。它们还需要对未来的不确定性进行估计,以便在未来的情况下,以在气候投射的条件下做出更好的知情决策。为了满足这些社会需求,本研究将以多模型投影的形式使用有关气候变化的最大可用信息,并开发将推断气候变化预测不确定性的方法。与以前的研究相反,该项目将综合一系列水文/流体动力学模型和观察数据,以创建通过整个分水岭系统传播有关气候信号的信息的能力:从Headwater(Source)(源)区域到流渠道到流渠道,以及流动特征的详细信息。为了确保专门解决模型应用程序的问题,并确保研究发现产生实际影响,将在整个密歇根州制定案例研究。此外,该职业项目将集成焦点的教育活动,以增强服务不足/代表性不足的学生群体(低收入家庭和美洲原住民)的科学课程计划,以赋予他们的思维能力成为未来的领导者,并追求科学和工程作为职业选择

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valeriy Ivanov其他文献

Hydraulic traits explain differential responses of Amazonian forests to the 2015 El 15 Nino-induced drought 16
水力特征解释了亚马逊森林对 2015 年厄尔尼诺现象引起的干旱 15 的差异反应 16
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fernanda V. Barros;P.R.L. Bittencourt;M. Brum;;17;Coupe;Luciano Pereira;G. Teodoro;S. Saleska;L. Borma;B. Christoffersen;D. Penha;Luciana F. Alves;Adriano J. N. Lima;V. Carneiro;P. Gentine;Jung;L. E. Aragão;Valeriy Ivanov;Leila S. M. Leal;Alessandro C. Araújo;Rafael S. Oliveira
  • 通讯作者:
    Rafael S. Oliveira

Valeriy Ivanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valeriy Ivanov', 18)}}的其他基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
  • 批准号:
    2053429
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NNA Research: Interactions of natural and social systems with climate change, globalization, and infrastructure development in the Arctic
合作研究:NNA 研究:自然和社会系统与气候变化、全球化和北极基础设施发展的相互作用
  • 批准号:
    2126792
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
  • 批准号:
    2111028
  • 财政年份:
    2022
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
NNA Track 2: Collaborative Research: Interactions of environmental and land surface change, animals, infrastructure, and peoples of the Arctic
NNA 轨道 2:合作研究:环境和地表变化、动物、基础设施和北极人民的相互作用
  • 批准号:
    1928014
  • 财政年份:
    2019
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Are Amazon forest trees source or sink limited? Mapping hydraulic traits to carbon allocation strategies to decipher forest function during drought
合作研究:亚马逊森林树木的来源或汇是否有限?
  • 批准号:
    1754163
  • 财政年份:
    2018
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Hydrologic and Permafrost Changes Due to Tree Expansion into Tundra
合作研究:树木扩展到苔原导致的水文和永久冻土变化
  • 批准号:
    1725654
  • 财政年份:
    2017
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
Collaborative research: Linking Heterogeneity of Above-Ground and Subsurface Processes at the Gap-Canopy Patch Scales to Ecosystem Level Dynamics
合作研究:将间隙冠层斑块尺度的地上和地下过程的异质性与生态系统水平动态联系起来
  • 批准号:
    0911444
  • 财政年份:
    2009
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂结构化环境下大规模多移动机器人的死锁及协同路径规划问题研究
  • 批准号:
    62373139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大规模MIMO低轨卫星物联网多波束传输技术
  • 批准号:
    62301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向动态增效的大规模双馈风电机组群多机协调优化控制方法研究
  • 批准号:
    52307052
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低轨卫星通信系统的稀疏多域扩展大规模接入方案设计
  • 批准号:
    62301123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智慧矿山多源异构数据计算的大规模集群调度优化方法
  • 批准号:
    52304185
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
  • 批准号:
    2338386
  • 财政年份:
    2024
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Standard Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 54.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了