CAREER:Thermal Energy Transport in Organic-Inorganic Hybrid Materials

职业:有机-无机杂化材料中的热能传输

基本信息

  • 批准号:
    1149374
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-15 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

PI: Jonathan A. Malen, Carnegie Mellon UniversityProposal Number: CBET-1149374The objective of this CAREER proposal is to study thermal transport in organic-inorganic hybrid materials. Organic-Inorganic Hybrid Materials are attractive alternatives to single crystal semiconductors for electronics, photonics, and energy conversion because they can be manufactured with scalable solution-based processes. For these applications the organic-inorganic interface has been leveraged to control electronic transport, but thermal properties remain uncultivated. It is hypothesized that collective properties, emergent at the organic-inorganic interface, will enable unprecedented control of the thermal phonon spectrum in hybrid materials. The intellectual merit of the proposal centers around the experimental measurement of thermal transport in two novel hybrid materials: self assembled monolayers (SAMs) and nanocrystal superlattices (NCSLs). SAMs are 2-D molecular crystals that form on inorganic surfaces, and NCSLs are 3-D arrays of inorganic spheres spaced by organic molecules. Coupling and alignment of dissimilar vibrational states in the organic and inorganic components can be controlled by chemistry to yield diverse thermal transport properties. These effects will be experimentally interrogated through (i) the development of a new continuous-wave laser method to probe an unparalleled range of phonon mean free paths in solids, (ii) measurements of thermal conductivity and phonon mean free path distributions in NCSLs, and (iii) systematic measurements of SAM interface thermal conductance.The ability to manipulate the phonon spectrum will broadly impact a wide range of applications in energy and biology. Due to short phonon wavelengths (10 nm), hybrid based phonon-optics would achieve much higher resolution than visible light having much longer wavelengths. Such non-destructive imaging can be extremely useful in assays of biological, organic, and inorganic samples. Further, solution chemistry based manufacturing and tunable electro-optic properties make hybrids ideal for energy conversion technologies that demand wide deployment, including thermoelectrics, photovoltaics, and LEDs. Engineering hybrid devices requires knowledge of their hitherto unknown thermal properties, whereas phonon control can yield unique performance upgrades. Bandpass filtering of phonons by SAMs can increase the efficiency of optoelectronics, while decoupled thermal and electronic transport properties make NCSLs ideal for thermoelectric waste heat conversion. An integrated educational plan that aspires to demystify the phonon is highlighted by the "Phonon-Simulator", a model spring-mass system that simulates vibrations in matter. This educational kit will be paired with online software and deployed throughout the Pittsburgh Public Schools (PPS) to introduce the origins of heat transfer through an interactive educational program. The local focus will be underrepresented pre-college students from PPS as well as students at Carnegie Mellon. Broader dissemination will be achieved by workshops at the Intel International Science & Engineering Fair and the Siemens Competition, aimed at jointly recruiting scholars into engineering.
PI:乔纳森·马伦(Jonathan A. 有机无机杂交材料是电子,光子学和能量转换的单晶半导体的有吸引力替代品,因为它们可以通过可扩展的基于溶液的工艺制造。对于这些应用,有机无机界面已被利用以控制电子传输,但是热性能仍然没有培养。假设在有机无机界面上出现的集体特性将能够对混合材料中的热声子谱进行前所未有的控制。该提案的智力优点围绕两种新型混合材料的热运输实验测量:自组装单层(SAM)和纳米晶体超级晶格(NCSL)。 SAM是在无机表面形成的2-D分子晶体,NCSL是有机分子间隔间隔的无机球的3-D阵列。有机和无机成分中不同振动状态的耦合和比对可以通过化学控制以产生各种热运输特性。 这些效果将通过(i)开发一种新的连续波激光方法来询问这些效果,以探测固体中无与伦比的声子平均自由路径的无与伦比范围,(ii)测量导热率和声子在NCSL中的平均自由路径分布,以及(iii)SAM界面热电导的系统测量。操纵声子频谱的能力将广泛影响能量和生物学中的广泛应用。 由于短声子波长(10 nm),基于混合的声子镜可以比具有更长波长的可见光获得更高的分辨率。 这种非破坏性成像在生物,有机和无机样品的测定中非常有用。此外,基于溶液化学的制造和可调的电光特性使杂种非常适合需要广泛部署的能量转换技术,包括热电学,光伏和LED。工程混合设备需要了解其迄今未知的热性能,而声子控制可以产生独特的性能升级。 通过SAM对声子进行带通滤波可以提高光电子的效率,而脱钩的热和电子传输特性使NCSLS使NCSLS非常适合热电废物热转化。 “声子模拟器”强调了一种渴望揭开声音神秘化的综合教育计划,这是一种模拟物质振动的模型弹簧质量系统。该教育套件将与在线软件配对,并在整个匹兹堡公立学校(PPS)中部署,以通过互动教育计划介绍传热的起源。 当地的重点将是PPS和Carnegie Mellon的学生的代表性不足的预科学生。 英特尔国际科学与工程博览会和西门子竞赛的研讨会将实现更广泛的传播,旨在共同招募学者从事工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Malen其他文献

Jonathan Malen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Malen', 18)}}的其他基金

Collaborative Research: Electric Field- and Light-Modulated Thermal Transport in Superatomic Crystals
合作研究:超原子晶体中的电场和光调制热传输
  • 批准号:
    2017159
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Amplifying the Efficiency of Tungsten Disulfide (WS2) Thermoelectric Devices
合作研究:提高二硫化钨 (WS2) 热电器件的效率
  • 批准号:
    1901972
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Local thermoreflectance measurement of evaporative heat transfer in the thin film region of a dynamic meniscus
目标:动态弯月面薄膜区域蒸发传热的局部热反射测量
  • 批准号:
    1804752
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Proposal for Partial Funding of the 9th U.S.-Japan Joint Seminar on Nanoscale Transport Phenomena, Tokyo, Japan, July 2-5, 2017
第九届美日纳米尺度输运现象联合研讨会部分资助提案,日本东京,2017 年 7 月 2-5 日
  • 批准号:
    1737436
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI:Tradeoffs in Heat Dissipation and Optical Performance at Plasmonic Interfaces
目标:等离子界面散热和光学性能的权衡
  • 批准号:
    1403447
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Thermal Transport by Phonons in Device-Grade Nitride Nanostructures
GOALI:设备级氮化物纳米结构中声子的热传输
  • 批准号:
    1133394
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

大西洋热含量快速上升的机理研究
  • 批准号:
    42306037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于走航观测的南极海域夏季湍流热通量特征及参数化研究
  • 批准号:
    42305078
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共振磁扰动影响高密度等离子体边界湍流输运和辐射热不稳定性的研究
  • 批准号:
    12375218
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
  • 批准号:
    32302027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of mitochondrial-ER communication during dietary and thermal induced stress
饮食和热应激期间线粒体-内质网通讯的机制
  • 批准号:
    10663603
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
CAREER: Nonequilibrium effects in thermochemical energy storage: linking microstructure to thermal transport
职业:热化学储能中的非平衡效应:将微观结构与热传输联系起来
  • 批准号:
    2238705
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Transfer of Momentum and Energy in the Nanoscale Using Quantum and Thermal Fluctuations
职业:利用量子和热涨落在纳米尺度上传递动量和能量
  • 批准号:
    1941680
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
  • 批准号:
    1836967
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
  • 批准号:
    1941743
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了