EAGER: Recurring Pattern Discovery

EAGER:重复模式发现

基本信息

  • 批准号:
    1144938
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Similar yet visually non-identical objects form recurring patterns that are ubiquitous in the world we live in. Thus an automatic recurring pattern detection algorithm can serve as a stepping stone towards robust higher level machine intelligence. The recognition of such recurring patterns is especially relevant for computer vision since it can lead to saliency detection, image segmentation, image compression and super-resolution, image retrieval and semantically meaningful organization of unlabeled data. This project explores automatic recurring pattern discovery from domain independent images and videos to capture, robustly and flexibly, varying mid-level visual cues emerging from any cluttered background. The work leads to effective and efficient object discovery and scene interpretation. The research team develops an un-supervised method for discovering recurring patterns in a single or multiple images . The key property is the nature of recurring without knowing what recurs. Differing from previous feature- or object-level pairwise-matching-based approaches, recurring pattern discovery from real images is formulated as a joint, 2-dimensional feature assignment optimization problem where multiple objects and multiple feature clusters are considered simultaneously. The project disseminates the results through publications and sharing data with other researchers. The research of this project contributes to the understanding and capturing of recurring patterns in higher spatial dimensions and spatiotemporal domains. Besides computer vision and computer graphics, many other research fields can also benefit from this research.
类似但视觉上的非相同对象形成了我们所生活的世界无处不在的经常性图案。因此,自动重复的图案检测算法可以用作踏板的石材,以实现强大的更高级别的机器智能。这种重复模式的识别与计算机视觉尤其重要,因为它可以导致显着性检测,图像分割,图像压缩和超分辨率,图像检索和语义意义的未标记数据组织。该项目探讨了从域独立图像和视频中自动重复的模式发现,以稳健而灵活地捕获,从任何混乱的背景中出现的中层视觉提示变化。这项工作导致有效,有效的对象发现和场景解释。研究团队开发了一种无监督的方法,用于在单个或多个图像中发现重复的模式。关键特性是不知道重新出现的重复性的本质。与以前的特征级或对象级成对基于基于成对匹配的方法不同,来自真实图像的重复图案发现被公正为关节,二维特征分配优化问题,其中多个对象和多个特征簇同时考虑。该项目通过出版物传播结果并与其他研究人员共享数据。该项目的研究有助于理解和捕获较高空间维度和时空域中的重复模式。除了计算机视觉和计算机图形外,许多其他研究领域也可以从这项研究中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanxi Liu其他文献

Symmetry groups in robotic assembly planning
  • DOI:
  • 发表时间:
    1991-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxi Liu
  • 通讯作者:
    Yanxi Liu
Robust Midsagittal Plane Extraction from Coarse, Pathological 3D Images
从粗糙的病理 3D 图像中稳健地提取正中矢状面
Training data recycling for multi-level learning
多层次学习的训练数据回收
SVM Based Feature Screening Applied To Hierarchical Cervical Cancer Detection
基于SVM的特征筛选应用于分层宫颈癌检测
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiayong Zhang;Yanxi Liu;Tong Zhao
  • 通讯作者:
    Tong Zhao
Human Identi cation versus Expression Classi cation via Bagging on Facial Asymmetry
通过面部不对称性进行装袋的人类识别与表情分类
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxi Liu;S. Mitra
  • 通讯作者:
    S. Mitra

Yanxi Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanxi Liu', 18)}}的其他基金

RI: Small: Explicit and Implicit Regularity Perception
RI:小:显性和隐性规律性感知
  • 批准号:
    1909315
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
INSPIRE: Symmetry Group-based Regularity Perception in Human and Computer Vision
INSPIRE:人类和计算机视觉中基于对称群的规则感知
  • 批准号:
    1248076
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
USA-Sino Summer School in Vision, Learning, Pattern Recognition, VLPR 2012
美中视觉、学习、模式识别暑期学校,VLPR 2012
  • 批准号:
    1240450
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop/Tutorial/Competition: Computational Symmetry in Computer Vision
研讨会/教程/竞赛:计算机视觉中的计算对称性
  • 批准号:
    1040711
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
A Computational Model for Periodic Pattern Perception Based on Crystollagraphic Groups
基于晶体群的周期性模式感知计算模型
  • 批准号:
    0099597
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

THE PURPOSE OF THIS REQUIREMENT IS TO PROVIDE REGULATORY SERVICES AND TECHNICAL SUPPORT TO THE DIVISION OF CANCER PREVENTION (DCP) AT THE NATIONAL CANCER INSTITUTE (NCI). NCI AND DCP HAVE A RECURRING
此要求的目的是为国家癌症研究所 (NCI) 的癌症预防部门 (DCP) 提供监管服务和技术支持。
  • 批准号:
    10974513
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Nunatsiavut Coastal Interaction Project: recurring polynyas, benthic habitats and natural hazards
Nunatsiavut 沿海互动项目:重复出现的冰间湖、底栖栖息地和自然灾害
  • 批准号:
    567184-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Ship Time
Development of CAR-T cells to treat recurring leukemia post-HCT by targeting mismatched HLA-DP
开发 CAR-T 细胞,通过靶向不匹配的 HLA-DP 来治疗 HCT 后复发性白血病
  • 批准号:
    21K08369
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Doctoral Dissertation Research: Vulnerability and Resilience in Contexts of Recurring Violence Against Women
博士论文研究:反复发生暴力侵害妇女行为背景下的脆弱性和复原力
  • 批准号:
    2016999
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
An intelligence system using data sharing and AI to prevent recurring fraud, particularly in the travel industry. Users will be able to use confirmed fraud data to make decisions on whether to accept a risk, with safeguards in place.
使用数据共享和人工智能来防止重复发生的欺诈行为的智能系统,特别是在旅游业。
  • 批准号:
    86548
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了