Mechanisms of Damage to Pharmaceutical Proteins at Oil-Water Interfaces

油水界面药物蛋白的损伤机制

基本信息

  • 批准号:
    1133871
  • 负责人:
  • 金额:
    $ 33.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

1133871RandolphIntroduction: During their production, processing, storage and delivery to patients, therapeutic proteins are exposed to various interfaces, such as the interface between the silicone oils that are used to lubricate glass syringes and aqueous solutions in which the proteins are formulated. Proteins may adsorb to these interfaces, which in turn can result in aggregation of the protein. Protein aggregation in pharmaceutical formulations is associated with changes in potency, risks of increased immunogenicity, and shortened shelf life, and hence is a major contributor to the estimated $1.2 billion required for development of a new protein-based therapeutic. Interfacial damage of proteins is a particular problem at fluid-fluid interfaces, where the dynamic nature of the interface (e.g., in response to shear forces experienced during shipping and handling of a protein formulation) may offer increased exposure of interfaces to proteins. This project examines the behavior of therapeutic proteins as they interact with silicone oil/water interfaces. The mechanisms of such interactions are probed with advanced spectroscopic and physical techniques, with a goal of developing rational design strategies to prevent interfacial protein damage and reduce associated costs and health risks. Intellectual Merit: Protein adsorption and aggregation at interfaces is ubiquitous, but the fundamental mechanisms leading to protein adsorption at interfaces and consequent generation of aggregates remain poorly understood. This project, a collaboration between two research groups with expertise in protein interfacial science, protein conformational thermodynamics and aggregation kinetics will address both the microscale mechanisms that lead to protein adsorption and unfolding at interfaces, and the kinetic processes that result in macroscopically observable protein aggregation. To characterize the kinetics of adsorption and interfacial aggregation at oil-water interfaces, a combination of several state-of-the-art experimental techniques will be developed and applied. These include single-molecule tracking micro-rheology (using fluorescence microscopy), emulsion adsorption, fluorescence-activated cell sorting (FACS) and front-face fluorescence quenching of adsorbed protein. Molecular conformation of proteins at silicone oil-water interfaces will be measured using Forster resonant energy transfer (FRET) in order such as to establish direct connections between protein conformation and dynamic processes such adsorption, desorption, interfacial mobility, aggregation. Likewise, protein adsorption at the air-water interface will be measured using dynamic pendant bubble tensiometry, emulsion depletion experiments and FACS, and the resulting protein aggregation monitored by flow microscopy, chromatography and FACS. The links between interfacially-induced protein damage and formulation conditions will be explored by determining the effects of interfacial area change, protein concentration, thermodynamic conditions, and excipients. By manipulating the thermodynamic stability of the protein's native state structure (e.g., with stabilizing excipients), microscopic protein unfolding processes will be linked to interfacial phenomena and macroscopic measurements of agitation-induced-aggregation kinetics.Broader Impacts: The project will have several broad impacts. First, a detailed understanding of protein adsorption at oil-water interfaces will aid the design of formulations that provide protection against interfacially-induced protein aggregation, reduce development costs and offer increased patient safety. Second, the many new techniques that will be tested and developed will be of use to a wide variety of academic and industrial scientists. Furthermore, protein adsorption and aggregation at interfaces is of critical importance to several other scientific endeavors, such as vaccinology, applications of microfluidics and nanotechnology in the diagnostics arena and the development of implantable medical devices. By linking two research groups with diverse expertise in interfacial science and protein formulation, the graduate and undergraduate students who participate in this research will receive a broad, cross-disciplinary training. In addition, because of the groups close ties with the biopharmaceutical industry, the results of this research will be rapidly disseminated so as to afford maximum impact in practical applications of the proposed new, fundamental scientific studies.
1133871Randolph简介:在生产、加工、储存和交付给患者的过程中,治疗性蛋白质会暴露于各种界面,例如用于润滑玻璃注射器的硅油与配制蛋白质的水溶液之间的界面。 蛋白质可能吸附到这些界面上,进而导致蛋白质聚集。药物制剂中的蛋白质聚集与效力变化、免疫原性增加的风险和保质期缩短有关,因此是开发新的蛋白质疗法所需的约 12 亿美元的主要贡献者。 蛋白质的界面损伤是流体-流体界面的一个特殊问题,其中界面的动态性质(例如,响应蛋白质制剂运输和处理过程中经历的剪切力)可能会增加界面与蛋白质的接触。 该项目研究了治疗性蛋白质与硅油/水界面相互作用时的行为。 利用先进的光谱和物理技术探讨这种相互作用的机制,目的是制定合理的设计策略,以防止界面蛋白损伤并降低相关成本和健康风险。 智力优点:蛋白质在界面处的吸附和聚集是普遍存在的,但导致蛋白质在界面处吸附并随后产生聚集体的基本机制仍然知之甚少。该项目由两个在蛋白质界面科学、蛋白质构象热力学和聚集动力学方面拥有专业知识的研究小组合作,将解决导致蛋白质在界面吸附和展开的微观机制,以及导致宏观可观察到的蛋白质聚集的动力学过程。为了表征油水界面吸附和界面聚集的动力学,将开发和应用几种最先进的实验技术的组合。其中包括单分子跟踪微流变学(使用荧光显微镜)、乳液吸附、荧光激活细胞分选 (FACS) 和吸附蛋白质的正面荧光猝灭。将使用福斯特共振能量转移(FRET)测量硅油-水界面处蛋白质的分子构象,以便在蛋白质构象与吸附、解吸、界面迁移、聚集等动态过程之间建立直接联系。同样,将使用动态悬垂气泡张力测定法、乳液消耗实验和 FACS 来测量空气-水界面处的蛋白质吸附,并通过流式显微镜、色谱法和 FACS 监测所得的蛋白质聚集。通过确定界面面积变化、蛋白质浓度、热力学条件和赋形剂的影响,将探索界面诱导的蛋白质损伤与配方条件之间的联系。通过操纵蛋白质天然状态结构的热力学稳定性(例如,使用稳定赋形剂),微观蛋白质展开过程将与界面现象和搅拌诱导聚集动力学的宏观测量联系起来。 更广泛的影响:该项目将产生几个广泛的影响。首先,对油水界面蛋白质吸附的详细了解将有助于设计配方,防止界面诱导的蛋白质聚集,降低开发成本并提高患者安全性。其次,将要测试和开发的许多新技术将供广泛的学术和工业科学家使用。此外,界面上的蛋白质吸附和聚集对于其他一些科学事业至关重要,例如疫苗学、微流体和纳米技术在诊断领域的应用以及植入式医疗设备的开发。通过将两个在界面科学和蛋白质配方方面具有不同专业知识的研究小组联系起来,参与这项研究的研究生和本科生将接受广泛的跨学科培训。此外,由于该小组与生物制药行业有着密切的联系,这项研究的成果将被迅速传播,以便在所提出的新的基础科学研究的实际应用中产生最大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Theodore Randolph其他文献

Theodore Randolph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Theodore Randolph', 18)}}的其他基金

GOALI: Aggregation of Protein Therapeutics in Aqueous Solutions
目标:蛋白质治疗药物在水溶液中的聚集
  • 批准号:
    0138595
  • 财政年份:
    2002
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Acquisition of a Nanoparticle Analysis Ensemble
获得纳米颗粒分析套件
  • 批准号:
    0079612
  • 财政年份:
    2000
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Mechanisms for Success or Failure of Excipients and Protein-Stabilizers
赋形剂和蛋白质稳定剂成功或失败的机制
  • 批准号:
    9816975
  • 财政年份:
    1999
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Thermodynamic and Molecular Mechanisms of Protein Stabilization by Polymers During Freezing, Drying, and Rehydration: EPR and FTIR Studies
冷冻、干燥和再水合过程中聚合物稳定蛋白质的热力学和分子机制:EPR 和 FTIR 研究
  • 批准号:
    9505301
  • 财政年份:
    1995
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
High Pressure Effects on Protein Crystallization (Collaborative Research)
高压对蛋白质结晶的影响(合作研究)
  • 批准号:
    9529288
  • 财政年份:
    1995
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Reactions in Supercritical Fluids: Experimental and Simulation Studies of Microscopic Phenomena
超临界流体中的反应:微观现象的实验和模拟研究
  • 批准号:
    9414759
  • 财政年份:
    1994
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Presidential Young Investigators Award: Spectroscopic Studies of Proteins in Engineering Environments
总统青年研究员奖:工程环境中蛋白质的光谱研究
  • 批准号:
    9496042
  • 财政年份:
    1993
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Presidential Young Investigators Award: Spectroscopic Studies of Proteins in Engineering Environments
总统青年研究员奖:工程环境中蛋白质的光谱研究
  • 批准号:
    9157318
  • 财政年份:
    1991
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

线粒体功能障碍介导NLRP3炎性小体串联调控代谢综合征膀胱高糖损害的机制研究
  • 批准号:
    82360156
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
发作性睡病发生快眼动期睡眠行为障碍(RBD)与认知损害的分子机制研究
  • 批准号:
    82371489
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
光老化成纤维细胞通过IL6损害树突状细胞免疫监视致黑色素瘤免疫逃逸的分子机制及四君子汤的干预作用
  • 批准号:
    82304938
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于影像组学和蛋白组学特征关联网络的视网膜脱离光感受器细胞损害预测和机制研究
  • 批准号:
    82371064
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
睡眠剥夺对社会认知的损害及其神经影像机制研究
  • 批准号:
    82301673
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
  • 批准号:
    10749974
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
  • 批准号:
    10637962
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
Mechanisms of response and resistance to KRAS inhibition in pancreatic cancer
胰腺癌中 KRAS 抑制的反应和耐药机制
  • 批准号:
    10566224
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
Unraveling the corneal and retinal mechanisms of chemical injury
揭示化学损伤的角膜和视网膜机制
  • 批准号:
    10882069
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
Mechanisms of Cellular Senescence Driving Intervertebral Disc Aging through Local Cell Autonomous and Systemic Non-Cell Autonomous Processes
细胞衰老通过局部细胞自主和全身非细胞自主过程驱动椎间盘老化的机制
  • 批准号:
    10635092
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了