COLLABORATIVE RESEARCH: Nano-Engineered MOF-Graphene Materials: New Perspectives for Reactive Adsorption and Catalysis

合作研究:纳米工程MOF-石墨烯材料:反应吸附和催化的新视角

基本信息

  • 批准号:
    1133066
  • 负责人:
  • 金额:
    $ 21.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

1133112/1133066Bandosz/GibbinsActivated carbons possess high surface area (typically 1,000-2,000 m2g-1) and are powerful physical adsorbents, but have little catalytic activity except at high temperatures. Metal-organic framework (MOF) materials are generally effective catalysts, but are less effective as adsorbents. Recently, in a proof of concept, we have succeeded in synthesizing a GO/MOF nanocomposite material, and shown that it is very effective in removing toxic gases (ammonia, hydrogen sulfide) from gas streams through a combination of surface reaction and adsorption. The capacity of the nanocomposites to remove toxic gases significantly exceeds that of either the MOF or graphite oxide alone, and preliminary results for ammonia suggest that these nanocomposites can achieve a 300% or more increase in adsorption capacity over conventional activated carbons. This project will be a joint experimental-theoretical study of such graphene/MOF and GO/MOF (collectively, G/MOF) nanocomposites, with the aim of determining their formation mechanism, atomic structure, pore structure and catalytic and adsorption properties, with the practical goal of designing materials with optimal adsorption and catalytic properties for the removal of toxic gases. As grapheme-based components graphite, graphite oxide and exfoliated graphite will be used. Syntheses will be followed by characterization. The interactions of NH3 and H2S, separately and mixed with methane, with the nanocomposites will then be investigated. These systems are chosen based on the properties and differences in the chemical nature of the adsorbates, the need for reactive adsorption under ambient conditions, and the potential detection capabilities of graphene-based nanocomposites. For the latter the changes in electrical conductivity can be employed. MOFs chosen for the study will include water stable materials with potentially active Cu, Cr and Fe sites, such as Cu-BT or MIL-100. In parallel with the experimental program, dual scale theoretical studies using molecular simulation (Monte Carlo, Hybrid Reverse Monte Carlo and Molecular Dynamics) and (ab initio) density functional theory will be carried out to determine details of the atomic structure of the materials, the reaction mechanism, reactive adsorption capacity and heats of adsorption. These theoretical results will help direct the experimental program towards promising materials and conditions. This research project will provide fundamental understanding of the relation between synthesis conditions, atomic structure and pore morphology, and separations performance for a new class of G/MOF nanocomposites that are designed for toxic gas removal. These novel materials may find application in other separations and in sensing devices. The broad spectrum of surface characterization and theoretical methods applied will lead to a better understanding of the surface chemistry of adsorbents and catalysts in general. The research is directly relevant to developing new strategies to design effective materials for removal of toxic gases from air at ambient conditions through reactive adsorption. Another important technical aspect is the possibility of applications of these materials as gas sensors. If small molecule gases are intercalated within the graphite interlayer space the electrical conductivity is expected to change, and this phenomenon can be used to detect toxic gases at low concentration range. A preliminary exploratory study of ammonia on a GO/MOF nanocomposite showed an approximately threefold increase in adsorption capacity over conventional activated carbons. Thus, the proposed research is potentially transformative. The project will involve two graduate students, two undergraduate researchers and one high school student from an inner city science-oriented high school. CCNY is a minority serving institution, and the project would provide the possibility for a member of an under-represented group to perform research and to earn the Ph.D. NCSU?s AGEP/Opt-Ed and ORNL?s Research Alliance in Math and Science (RAMS) summer program will also provide opportunities to recruit students from under-represented populations. The whole education experience of the students will be based on the integration of research and education.
1133112/1133066Bandosz/Gibbins活性炭具有高表面积(通常为1,000-2,000 m2g-1),是强大的物理吸附剂,但除高温外几乎没有催化活性。金属有机骨架(MOF)材料通常是有效的催化剂,但作为吸附剂效果较差。最近,在概念验证中,我们成功合成了 GO/MOF 纳米复合材料,并表明它通过表面反应和吸附相结合,可以非常有效地去除气流中的有毒气体(氨、硫化氢)。纳米复合材料去除有毒气体的能力显着超过单独的 MOF 或氧化石墨,针对氨的初步结果表明,这些纳米复合材料的吸附能力比传统活性炭提高了 300% 或更多。该项目将对石墨烯/MOF和GO/MOF(统称G/MOF)纳米复合材料进行联合实验和理论研究,旨在确定它们的形成机制、原子结构、孔结构以及催化和吸附性能,设计具有最佳吸附和催化性能的材料来去除有毒气体的实际目标。作为石墨烯基成分,将使用石墨、氧化石墨和膨胀石墨。合成之后将进行表征。然后将研究 NH3 和 H2S(单独以及与甲烷混合)与纳米复合材料的相互作用。这些系统的选择基于吸附物化学性质的特性和差异、环境条件下反应吸附的需要以及石墨烯基纳米复合材料的潜在检测能力。对于后者,可以利用电导率的变化。研究中选择的 MOF 将包括具有潜在活性 Cu、Cr 和 Fe 位点的水稳定材料,例如 Cu-BT 或 MIL-100。与实验计划并行,将使用分子模拟(蒙特卡罗、混合逆蒙特卡罗和分子动力学)和(从头算)密度泛函理论进行双尺度理论研究,以确定材料原子结构的细节,反应机理、反应吸附容量和吸附热。这些理论结果将有助于指导实验计划开发有前景的材料和条件。该研究项目将为一类用于去除有毒气体的新型 G/MOF 纳米复合材料的合成条件、原子结构和孔形态以及分离性能之间的关系提供基础了解。这些新型材料可能会在其他分离和传感设备中得到应用。广泛的表面表征和理论方法的应用将有助于更好地理解吸附剂和催化剂的表面化学。该研究与开发新策略直接相关,以设计有效材料,通过反应吸附去除环境条件下空气中的有毒气体。另一个重要的技术方面是这些材料作为气体传感器应用的可能性。如果小分子气体嵌入石墨层间空间,电导率预计会发生变化,这种现象可用于检测低浓度范围的有毒气体。对 GO/MOF 纳米复合材料上氨的初步探索性研究表明,其吸附能力比传统活性炭增加了约三倍。因此,拟议的研究具有潜在的变革性。该项目将涉及两名研究生、两名本科生研究人员和一名来自内城科学高中的高中生。 CCNY 是一家少数族裔服务机构,该项目将为代表性不足的群体的成员提供进行研究并获得博士学位的可能性。 NCSU 的 AGEP/Opt-Ed 和 ORNL 的数学与科学研究联盟 (RAMS) 夏季项目也将提供从代表性不足的人群中招收学生的机会。学生的整个教育经历将基于研究和教育的结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Gubbins其他文献

Keith Gubbins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Gubbins', 18)}}的其他基金

Enhanced solubility in nanopores and its role in adsorption separations
纳米孔中溶解度的增强及其在吸附分离中的作用
  • 批准号:
    1603851
  • 财政年份:
    2016
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
GOALI: Molecular modeling of confined nano-phases: pressure enhancement, diffusion and electrical double layers
GOALI:受限纳米相的分子建模:压力增强、扩散和双电层
  • 批准号:
    1160151
  • 财政年份:
    2012
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Continuing Grant
"IRES: U.S.-Germany Collaborative Research on Self-Assembled Nanostructures"
“IRES:美德自组装纳米结构合作研究”
  • 批准号:
    1065466
  • 财政年份:
    2011
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Confinement and Surface Effects on Heterogeneous Reactions with Diffusion in Nano-Porous Materials
合作研究:纳米多孔材料中非均相扩散反应的约束和表面效应
  • 批准号:
    1012780
  • 财政年份:
    2010
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Continuing Grant
GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
  • 批准号:
    0932656
  • 财政年份:
    2009
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Removal of Toxic Gases by Intercalation and Reactive Adsorption
合作研究:插层和反应吸附去除有毒气体
  • 批准号:
    0754979
  • 财政年份:
    2008
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
US-Poland Workshop on Interfacial Phenomena and Advanced Materials
美国-波兰界面现象和先进材料研讨会
  • 批准号:
    0741367
  • 财政年份:
    2007
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
  • 批准号:
    0626031
  • 财政年份:
    2006
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
U.S.-Germany: Cooperative Research on Surfactant Self-Aggregation on Solid Surfaces and in Pores
美德:固体表面和孔隙中表面活性剂自聚集的合作研究
  • 批准号:
    0541956
  • 财政年份:
    2006
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
NIRT: Surfactant Self-Assembly on Nano-Structured Surfaces: Multi-Scale Computational Prediction and Design
NIRT:纳米结构表面上的表面活性剂自组装:多尺度计算预测和设计
  • 批准号:
    0403633
  • 财政年份:
    2004
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型抗菌蛋白CB6-C结构优化及其抗MRSA纳米给药系统研究
  • 批准号:
    32302932
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辐射诱导等离激元纳米泡的生成与调控机理研究
  • 批准号:
    52376070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
  • 批准号:
    82341043
  • 批准年份:
    2023
  • 资助金额:
    110 万元
  • 项目类别:
    专项基金项目
基于MOFs功能纳米复合材料的制备及其靶向胰腺癌干细胞线粒体的作用研究
  • 批准号:
    52372267
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀土/过渡金属掺杂六角相ZnS纳米晶可控合成、力致发光机理及传感应用研究
  • 批准号:
    12374371
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2331482
  • 财政年份:
    2023
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
  • 批准号:
    10663719
  • 财政年份:
    2023
  • 资助金额:
    $ 21.65万
  • 项目类别:
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
  • 批准号:
    10663719
  • 财政年份:
    2023
  • 资助金额:
    $ 21.65万
  • 项目类别:
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2132383
  • 财政年份:
    2022
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-Engineered Superwood for Resilient Foundation Systems
合作研究:用于弹性基础系统的纳米工程超级木材
  • 批准号:
    2120640
  • 财政年份:
    2022
  • 资助金额:
    $ 21.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了