Floating Offshore Wind Turbines: Conceptual Assessment of Highly Compliant Platforms using Theory, Design and Simulation

浮动式海上风力发电机:利用理论、设计和仿真对高度兼容的平台进行概念评估

基本信息

项目摘要

1133862 PI SweetmanThe objective of this project is to develop new theory and numerical tools to accurately simulate the behavior of floating offshore wind turbines subject to large angular displacements, and use those results to assess the economic and technical feasibility of potential next-generation structures. Intellectual Merit: The potential for a change in design philosophy from highly rigid wind turbine support structures to highly compliant ones will be investigated. New designs and operational control systems will be developed that allow the tower to lean significantly in response to the wind force, and the technical and economic merits of these new designs will be assessed. A shift to highly compliant structures would be a major shift in design philosophy paralleling that of the offshore oil business as drilling and production moved into very deep water. A family of new designs will be developed with rotational restoring properties ranging from very stiff (very small lean of the tower due to wind) to very compliant (leans easily). These designs will be completed in sufficient detail to identify all challenges to existing technology. Computing the dynamics of these highly compliant structures is both difficult and important, in part because of the gyroscopic effect of the huge whirling blades. This challenge will be met through theoretical development and practical implementation of a new dynamic simulation methodology that could prove useful beyond the field of wind energy to other rotating equipment subject to large angular displacements. The new method will be based on conservation of angular momentum in Euler-space for a cloud of rigid bodies representing a floating wind turbine. Development of this new theory and simulation methodology is necessary because conventional wind turbine design tools do not consider the order of rotation of angular deflections and so are inadequate for large angular motions. Additionally, the overall system is extremely nonlinear: the environmental forcing, hydrostatic restoring moments, time-domain control system, and gyroscopic effects are all nonlinear; accurate simulation in the time domain is necessary to assess the viability of the any design concept. Proof that highly compliant support structures have both technical and economic value could begin a technical revolution that enables economic development of wind farms in very challenging deepwater offshore locations. Broader Impacts: As the US continues to work towards ``greener?? sources of alternative energy, there is increasing interest in installing wind turbines offshore, where good winds and adequate space are both available. Public pressure continues to push for having these structures beyond sight of land, and new technologies are needed for more cost-effective generation of wind-powered electricity in very deep waters. This proposal explores for the first time the viability of highly compliant structures for that purpose, the result of which could be a dramatic shift in the design philosophy for floating wind turbines. The education and outreach components include course development, education of graduate and undergraduate students and outreach to K-12 students and teachers as well as to at-risk college students. The teaching will include development of innovative course curricula on off-shore wind energy to teach about design of both bottom-founded and floating offshore wind turbines, and will include education of graduate and undergraduate students in the rapidly advancing area of offshore wind turbine design. Outreach to K?12 students and teachers will be include presentations on offshore energy by the PI and his graduate students in the well-established ``Sea Camp?? program at Texas A&M at Galveston; outreach to at-risk college students, who include many historically underrepresented and financially disadvantaged students, will be through an established program.
1133862 PI Sweetman这个项目的目标是开发新的理论和数值工具,以准确模拟浮动的海上风力涡轮机的行为,并使用这些结果来评估潜在的下一代结构的经济和技术可行性。智力优点:将研究从高度刚性风力涡轮机支持结构变为高度合规的设计理念的潜力。将开发新的设计和操作控制系统,使塔可以响应风力,从而显着倾斜,并评估这些新设计的技术和经济优势。向高度兼容的结构转变将是设计理念的重大转变,即钻探和生产进入非常深水的近海石油业务。将开发一个新设计的家族,其旋转恢复性能从非常僵硬(由于风引起的非常小的倾斜)到非常合规(很容易倾斜)。这些设计将足够详细地完成,以确定对现有技术的所有挑战。计算这些高度兼容的结构的动力学既困难又重要,部分原因是巨大的旋转叶片的陀螺效果。这一挑战将通过理论开发和一种新的动态仿真方法的实际实施来应对,该方法可以证明在风能领域以外对其他旋转设备的有用,但受到大型角位移的影响。新方法将基于欧拉空间中角动量的保存,用于代表浮动风力涡轮机的刚体云。这种新理论和仿真方法的发展是必要的,因为常规风力涡轮机设计工具不考虑角度偏转的旋转顺序,因此对于大的角度运动而言不足。此外,整个系统非常非线性:环境强迫,静水恢复力矩,时间域控制系统和陀螺效应都是非线性的;为了评估任何设计概念的生存能力,需要在时间域中进行准确的模拟。证明高度合规的支持结构具有技术和经济价值,可以开始一场技术革命,该革命能够在极具挑战性的深水近海地点的经济发展。更广泛的影响:随着美国继续致力于``绿色''?替代能源的来源,对在海上安装风力涡轮机的兴趣越来越大,那里的风和充足的空间都可以使用。公共压力继续推动使这些结构超出土地的视线,需要新技术才能在非常深厚的水域中更具成本效益的风能发电。该建议首次探讨了高度合规结构的生存能力,其结果可能是浮动风力涡轮机的设计理念的巨大转变。 教育和外展成分包括课程发展,研究生和本科生的教育以及向K-12学生和老师以及高风险大学生的宣传。该教学将包括开发在离岸风能上的创新课程课程,以教授有关底部基础和浮动海上风力涡轮机的设计,并包括在离岸风力涡轮机设计快速前进的领域对研究生和本科生的教育。向K?的12名学生和老师的推广将包括PI和他的研究生在``海上营地)上的近海能量演讲了吗??在加尔维斯顿的德克萨斯A&M计划;与危险的大学生有关,包括许多历史上代表性不足和财务不利的学生,他们将通过一项既定计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Sweetman其他文献

Development of a three-compartment in vitro simulator of the Atlantic Salmon GI tract and associated microbial communities: SalmoSim
开发大西洋鲑鱼胃肠道和相关微生物群落的三室体外模拟器:SalmoSim
  • DOI:
    10.1101/2020.10.06.327858
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raminta Kazlauskaite;B. Cheaib;Chloe Heys;U. Ijaz;S. Connelly;William T. Sloan;Julie Russell;Laura Martínez;John Sweetman;Alex Kitts;Philip McGinnity;Philip Lyons;Martin S. Llewellyn
  • 通讯作者:
    Martin S. Llewellyn

John Sweetman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Sweetman', 18)}}的其他基金

U.S.-Germany Planning Visit: Structural Health Monitoring Sensors for Offshore Wind Turbines
美德计划访问:海上风力发电机结构健康监测传感器
  • 批准号:
    0813764
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Irregular Environmental Loading and Response of Offshore Structures
职业:海上结构的不规则环境载荷和响应
  • 批准号:
    0448730
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Sensors: Statistical Algorithm Development for Distributed Sensor Networks with Application to Structural Health Monitoring and State Assessment
传感器:分布式传感器网络统计算法开发,应用于结构健康监测和状态评估
  • 批准号:
    0428585
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

碳减排政策下离岸外包生产运营的复杂性及演化研究
  • 批准号:
    72261013
  • 批准年份:
    2022
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
东海冬季跨锋面离岸流演变过程及其对初级生产力的作用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于疏导风浪冲击作用的近海离岸建筑空间构型优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
外国证券投资的营商环境变迁研究:全球离岸金融中心的制度性嵌入视角
  • 批准号:
    72164009
  • 批准年份:
    2021
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
珠江口及其陆架区古三角洲离岸地下水的赋存、排泄和演化机制
  • 批准号:
    42130702
  • 批准年份:
    2021
  • 资助金额:
    291 万元
  • 项目类别:
    重点项目

相似海外基金

Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
  • 批准号:
    2744014
  • 财政年份:
    2026
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
  • 批准号:
    EP/W009684/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
  • 批准号:
    EP/W009854/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Dynamics and Control of a Novel Wave-Augmented Floating Offshore Wind Turbine
新型波浪增强浮式海上风力发电机的动力学与控制
  • 批准号:
    2323927
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了