CIF: Small: Robust Sparse Recovery for Highly Correlated Data
CIF:小型:高度相关数据的稳健稀疏恢复
基本信息
- 批准号:1117545
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most natural signals are inherently sparse in certain bases or dictionaries where they can be approximately represented by only a few significant components carrying the most relevant information. In other words, the intrinsic signal information usually lies in a low-dimensional subspace and the semantic information is often encoded in the sparse representation. Processing of such signals in the sparsified domain is much faster, simpler, and more robust than doing so in the original domain, making sparsity an extremely powerful tool in many classical signal processing applications. Recently, with the emergence of the Compressed Sensing (CS) framework, sparse representation and related optimization problems involving sparsity as a prior called sparse recovery have increasingly attracted the interest of researchers in various diverse disciplines, from statistics, to information theory, applied mathematics, signal processing, coding theory and theoretical computer science.This research involves the analysis, development, and application of robust sparsity-driven algorithms for already-collected highly-correlated data sets where signals often exhibit a high level of joint-sparsity and rich correlation structure. Examples of such data include natural video sequences, volumetric medical images, huge image database, hyperspectral imagery (HSI), and raw synthetic aperture radar (SAR) signals. The research develops a novel unifying robust sparse-recovery framework based on context-aware and observable data-adaptive dictionaries,focusing on two classes of practical applications of sparse recovery: (i) Representative -- denoising, concealment, inpainting, enhancement; and (ii) Discriminative -- clustering, detection, classification, and recognition. Recovery/Discrimination accuracy is greatly improved by taking into account inter-patch spatial correlation, inter-frame temporal correlation, and by adapting algorithms dynamically based on local signal contents as well as by maximizing the level of discrimination within the sparse recovery process.
大多数自然信号在某些基础或字典中本质上是稀疏的,在这些基础或字典中,它们只能由携带最相关信息的几个重要组成部分来近似表示。换句话说,内在信号信息通常位于低维子空间中,而语义信息通常编码在稀疏表示中。在稀疏域中处理此类信号比在原始域中处理更快、更简单且更鲁棒,使得稀疏性成为许多经典信号处理应用中极其强大的工具。近年来,随着压缩感知(CS)框架的出现,稀疏表示和涉及稀疏性的相关优化问题(称为稀疏恢复)越来越吸引了各个不同学科的研究人员的兴趣,从统计学到信息论、应用数学、信号处理、编码理论和理论计算机科学。这项研究涉及对已收集的高度相关数据集进行稳健的稀疏性驱动算法的分析、开发和应用,其中信号通常表现出高水平的联合稀疏性和丰富的相关结构。此类数据的示例包括自然视频序列、立体医学图像、庞大的图像数据库、高光谱图像 (HSI) 和原始合成孔径雷达 (SAR) 信号。该研究开发了一种基于上下文感知和可观察数据自适应字典的新型统一鲁棒稀疏恢复框架,重点关注稀疏恢复的两类实际应用:(i)代表性的——去噪、隐藏、修复、增强; (ii) 判别性——聚类、检测、分类和识别。通过考虑块间空间相关性、帧间时间相关性、根据本地信号内容动态调整算法以及最大化稀疏恢复过程中的辨别水平,恢复/辨别精度得到极大提高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trac Tran其他文献
Wavelet Transforms Significantly Sparsify and Compress Tactile Interactions
小波变换显着稀疏和压缩触觉交互
- DOI:
10.3390/s24134243 - 发表时间:
2024-06-29 - 期刊:
- 影响因子:0
- 作者:
Ariel Slepyan;Michael Zakariaie;Trac Tran;Nitish Thakor - 通讯作者:
Nitish Thakor
Trac Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trac Tran', 18)}}的其他基金
CIF:Small: Dynamic Dictionary Learning with Low-rank Interference
CIF:Small:具有低秩干扰的动态字典学习
- 批准号:
1422995 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Adaptive Pre- and Post-Filtering for Block-Based Communication Systems
基于块的通信系统的自适应预过滤和后过滤
- 批准号:
0728893 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Pre- and Post-Filtering for Block-Based Image and Video Communication Systems
基于块的图像和视频通信系统的预过滤和后过滤
- 批准号:
0430869 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Fast Efficient Adaptive Filter Banks and Applications in Digital Multimedia Coding/Processing
职业:快速高效的自适应滤波器组及其在数字多媒体编码/处理中的应用
- 批准号:
0093262 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236483 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant