Preconditioning, analysis, and applications of numerical algebraic geometry methods

数值代数几何方法的预处理、分析和应用

基本信息

  • 批准号:
    1115668
  • 负责人:
  • 金额:
    $ 30.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Numerical algebraic geometry involves the use of numerical methods to extract data from ideals about the corresponding varieties or schemes. This area has grown rapidly over the last 20 years and has found applications in many areas of science and engineering. This grant is funding four projects in the area of numerical algebraic geometry. First, the PI and his students will investigate several forms of preconditioning for homotopy continuation, including algorithms for finding (near-)optimal multihomogeneous and linear product start systems, as well as the use of dual bases to reduce the number of paths tracked to "bad" endpoints. Second, the PI and several collaborators will work on three application areas: exceptional mechanisms (via fiber products), software in Macaulay2 for algebraic geometry-related applications, and software for repeated parameter homotopies. Third, the PI will work on analyzing the complexity of numerical algebraic geometry algorithms. Finally, the PI and several collaborators will continue to work on methods to extract information about real algebraic sets both from standard continuation methods and from Khovanskii-Rolle continuation. Polynomial systems of equations arise in many places throughout mathematics, science, and engineering. An entire mathematical field - algebraic geometry - grew out of the need to find solutions to these sorts of equations. Until the 1960s, though, there was no known general technique for solving such systems of equations. The methods developed in that era require too much memory to be effective except for relatively small problems. More recently developed methods - the numerical methods of Sommese, Verschelde, Wampler, Li, and others, now collectively known as numerical algebraic geometry - allow for the solution of much larger polynomial systems, opening the application of algebraic geometry methods to a wider class of problems. However, there is still much to understand about these numerical methods. The goals of this project include addressing four open problems in this direction. This work includes the development of techniques to streamline some of these computations, the implementation of valuable algorithms in popular and useful software packages, a careful analysis of the computational costs associated with the computational methods in this field, and the continued effort to extract useful real-world data from the data provided as output from these methods.
数值代数几何涉及使用数值方法从有关相应品种或方案的理想中提取数据。 该领域在过去 20 年中发展迅速,并在科学和工程的许多领域得到了应用。 这笔赠款将资助数值代数几何领域的四个项目。 首先,PI 和他的学生将研究同伦延拓的几种预处理形式,包括寻找(接近)最优多齐次和线性乘积起始系统的算法,以及使用双基来减少跟踪到“坏的”端点。 其次,PI 和几位合作者将致力于三个应用领域:特殊机制(通过光纤产品)、Macaulay2 中用于代数几何相关应用的软件以及用于重复参数同伦的软件。 第三,PI将致力于分析数值代数几何算法的复杂性。 最后,PI 和一些合作者将继续研究从标准延拓方法和 Khovanskii-Rolle 延拓中提取有关实代数集信息的方法。多项式方程组出现在数学、科学和工程的许多地方。整个数学领域——代数几何——源于寻找这类方程的解的需要。然而,直到 20 世纪 60 年代,还没有已知的通用技术来求解此类方程组。那个时代开发的方法除了相对较小的问题外都需要太多的内存才能有效。最近开发的方法——Sommese、Verschelde、Wampler、Li 等人的数值方法,现在统称为数值代数几何——允许求解更大的多项式系统,从而将代数几何方法的应用扩展到更广泛的领域。问题。然而,关于这些数值方法仍有很多需要理解的地方。该项目的目标包括解决这个方向的四个悬而未决的问题。 这项工作包括开发简化其中一些计算的技术、在流行且有用的软件包中实现有价值的算法、仔细分析与该领域的计算方法相关的计算成本,以及不断努力提取有用的真实值。 -来自作为这些方法的输出提供的数据的世界数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Bates其他文献

The visual system prioritizes locations near corners of surfaces (not just locations near a corner)
视觉系统优先考虑表面拐角附近的位置(不仅仅是拐角附近的位置)
Configurable memory systems for embedded many-core processors
用于嵌入式众核处理器的可配置存储器系统
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Bates;Alex Chadwick;R. Mullins
  • 通讯作者:
    R. Mullins
Atlas and developmental dynamics of mouse DNase I hypersensitive sites
小鼠 DNase I 超敏感位点图谱和发育动态
  • DOI:
    10.1101/2020.06.26.172718
  • 发表时间:
    2020-06-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Breeze;John T Lazar;T. Mercer;J. Halow;Ida Washington;Kristen Lee;S. Ibarrientos;Andres Castillo;Fidencio J. Neri;E. Haugen;Eric Rynes;Alex P. Reynolds;Daniel Bates;Morgan Diegel;D. Dunn;R. Kaul;R. S;strom;strom;W. Meuleman;M. Bender;M. Groudine;J. Stamatoyannopoulos
  • 通讯作者:
    J. Stamatoyannopoulos
The impact of rare variation on gene expression across tissues
罕见变异对跨组织基因表达的影响
  • DOI:
    10.1038/nature24267
  • 发表时间:
    2016-09-09
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Xin Li;Yungil Kim;Emily K. Tsang;Joe R. Davis;Farhan N. Damani;Colby Chiang;Gaelen T. Hess;Zachary Zappala;Benjamin J. Strober;Ale;ra J. Scott;ra;Amy Li;A. Ganna;M. Bassik;J. Merker;F. Aguet;K. Ardlie;Beryl B. Cummings;Ellen T. Gelf;G. Getz;Kane Hadley;R. H;saker;saker;Katherine H. Huang;Seva Kashin;K. Karczewski;M. Lek;Xiao Li;D. MacArthur;Jared L. Nedzel;D. T. Nguyen;M. Noble;A. Segrè;Cas;ra A. Trowbridge;ra;T. Tukiainen;Nathan S. Abell;Brunilda Balliu;Ruth Barshir;Omer Basha;A. Battle;G. Bogu;A. Brown;Christopher D. Brown;Stephane E. Castel;Lin S. Chen;D. Conrad;N. Cox;O. Delaneau;E. Dermitzakis;B. Engelhardt;E. Eskin;Pedro G. Ferreira;L. Frésard;E. Gamazon;D. Garrido;Ariel D. H. Gewirtz;Genna Gliner;Michael J. Gloudemans;R. Guigó;Ira M. Hall;B. Han;Yuan He;F. Hormozdiari;C. Howald;H. Im;Brian Jo;Eun Yong Kang;Sarah Kim;T. Lappalainen;Gen Li;Boxiang Liu;S. Mangul;M. McCarthy;Ian C. McDowell;P. Mohammadi;Jean Monlong;S. Montgomery;Manuel Muñoz;Anne W. Ndungu;D. Nicolae;A. Nobel;Meritxell Oliva;H. Ongen;John Palowitch;N. Panousis;Panagiotis K. Papasaikas;YoSon Park;P. Parsana;Anthony J. Payne;Christine B. Peterson;J. Quan;F. Reverter;C. Sabatti;A. Saha;M. Sammeth;A. Shabalin;Reza Sodaei;M. Stephens;B. Stranger;J. Sul;S. Urbut;M. Bunt;Gao Wang;Xiaoquan Wen;F. Wright;H. Xi;Esti Yeger;Judith B. Zaugg;Yi‐Hui Zhou;J. Akey;Daniel Bates;Joanne Chan;M. Claussnitzer;Kathryn Demanelis;Morgan Diegel;J. Doherty;A. Feinberg;Maria S. Fern;o;o;J. Halow;K. Hansen;E. Haugen;P. Hickey;Lei Hou;F. Jasmine;Ruiqi Jian;Lihua Jiang;Audra K. Johnson;R. Kaul;Manolis Kellis;M. Kibriya;Kristen Lee;J. B. Li;Qin Li;Jessica Lin;Shin Lin;S;ra Linder;ra;C. Linke;Yaping Liu;M. Maurano;B. Molinie;Jemma Nelson;Fidencio J. Neri;Yongjin P. Park;B. Pierce;Nicola J. Rinaldi;L. Rizzardi;R. S;strom;strom;Andrew Skol;Kevin S. Smith;M. Snyder;J. Stamatoyannopoulos;Hua Tang;Li Wang;Meng Wang;N. V. Wittenberghe;Fan Wu;Rui Zhang;C. Nierras;P. Branton;Latarsha J. Carithers;P. Guan;Helen M. Moore;Abhi Rao;J. Vaught;Sarah E. Gould;Nicole C. Lockart;Casey Martin;J. Struewing;S. Volpi;A. Addington;S. Koester;A. Little;L. Brigham;R. Hasz;Marcus Hunter;Christopher Johns;Mark Johnson;G. Kopen;W. F. Leinweber;J. Lonsdale;Alisa McDonald;Bernadette Mestichelli;K. Myer;Brian Roe;Mike Salvatore;Saboor Shad;Jeffrey A. Thomas;Gary Walters;Michael Washington;Joseph Wheeler;J. Bridge;B. Foster;Bryan M. Gillard;E. Karasik;Rachna Kumar;Mark Miklos;M. T. Moser;S. Jewell;Robert G. Montroy;D. Rohrer;Dana R. Valley;D. Davis;D. Mash;Anita H. Undale;Anna M. Smith;D. Tabor;Nancy V. Roche;J. McLean;Negin Vatanian;Karna L. Robinson;L. Sobin;M. Barcus;Kimberly M. Valentino;L. Qi;Steven Hunter;P. Hariharan;Shilpi Singh;K. S. Um;Takunda Matose;M. Tomaszewski;Laura K. Barker;M. Mosavel;L. Siminoff;H. Traino;Paul Flicek;Thomas Juettemann;Magali Ruffier;Daniel Sheppard;K. Taylor;S. Trevanion;D. Zerbino;Brian Craft;M. Goldman;M. Haeussler;W. Kent;Christopher M. Lee;B. Paten;K. Rosenbloom;John Vivian;Jingchun Zhu
  • 通讯作者:
    Jingchun Zhu
Global reference mapping and dynamics of human transcription factor footprints
人类转录因子足迹的全球参考图谱和动态
  • DOI:
    10.1101/2020.01.31.927798
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Vierstra;John T Lazar;R. S;strom;strom;J. Halow;Kristen Lee;Daniel Bates;Morgan Diegel;D. Dunn;Fidencio J. Neri;E. Haugen;Eric Rynes;Alex P. Reynolds;Jemma Nelson;Audra K. Johnson;M. Frerker;Michael Buckley;R. Kaul;W. Meuleman;J. Stamatoyannopoulos
  • 通讯作者:
    J. Stamatoyannopoulos

Daniel Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Bates', 18)}}的其他基金

SI2-SSE: Collaborative Proposal: Symbolic-Numeric Approaches to Polynomials
SI2-SSE:协作提案:多项式的符号数值方法
  • 批准号:
    1440467
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
CONFERENCE: Tutorials in Applicable Algebraic Geometry
会议:适用代数几何教程
  • 批准号:
    1321473
  • 财政年份:
    2013
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Magnetic Viscosity and Thermoremanent Magnetization in Interacting Single-domain Ferromagnets
CMG 合作研究:相互作用单畴铁磁体中的磁粘度和热剩磁化
  • 批准号:
    1025564
  • 财政年份:
    2010
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Reality, exactness, and computation in numerical algebraic geometry
数值代数几何中的真实性、精确性和计算
  • 批准号:
    0914674
  • 财政年份:
    2009
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Interactions of Classical and Numerical Algebraic Geometry
经典与数值代数几何的相互作用
  • 批准号:
    0756904
  • 财政年份:
    2008
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Fertility, Family, and Society in Istanbul, 1880-1940
伊斯坦布尔的生育率、家庭和社会,1880 年至 1940 年
  • 批准号:
    8519748
  • 财政年份:
    1986
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant

相似国自然基金

限进分子印迹-固相微萃取活体取样新技术及其药物代谢分析应用研究
  • 批准号:
    21904109
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
在线预处理-催化化学发光分析方法及其应用研究
  • 批准号:
    21775167
  • 批准年份:
    2017
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
集成化在线样品预处理技术及在血浆内烟气多种代谢物分析中的应用
  • 批准号:
    21505158
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多云多雨地区时间序列信息提取应用驱动下的环境星数据预处理技术研究
  • 批准号:
    41301473
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于MOFs材料的样品预处理-电色谱联用技术的开发及其在环境中痕量PCBs分析中的应用
  • 批准号:
    21275053
  • 批准年份:
    2012
  • 资助金额:
    78.0 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
  • 批准号:
    20K19749
  • 财政年份:
    2020
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Genetic Architecture of Acute Human Brain Ischemia
急性人脑缺血的遗传结构
  • 批准号:
    8704525
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
Genetic Architecture of Acute Human Brain Ischemia
急性人脑缺血的遗传结构
  • 批准号:
    8815344
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
Role of titin in the pathophysiology of diaphragm weakness during mechanical vent
肌联蛋白在机械通气期间膈肌无力病理生理学中的作用
  • 批准号:
    8982039
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
Role of titin in the pathophysiology of diaphragm weakness during mechanical vent
肌联蛋白在机械通气期间膈肌无力病理生理学中的作用
  • 批准号:
    8614046
  • 财政年份:
    2014
  • 资助金额:
    $ 30.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了