Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization

协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法

基本信息

  • 批准号:
    1115345
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This project develops, analyses and implements projection based reduced order models (ROMs) for optimization problems associated with nonlinear evolution partial differential equations (PDEs). These ROMs determine a subspace that contains the essential (for the optimization) dynamics of the nonlinear evolution PDEs and project these PDEs onto the subspace. If the subspace is small, the original nonlinear PDEs in the optimization problem can be replaced by a small system of ordinary differential equations and the resulting approximate optimization problem can be solved efficiently. The efficient generation of ROMs together with error estimates that can monitor the quality of the ROMs is challenging. This project expands and integrates ideas from goal oriented adaptive mesh refinement, proper orthogonal decomposition (POD), and model management approaches in optimization to overcome these challenges. Specifically, model management ideas from optimization are used determine at which optimization parameters the nonlinear evolution PDE needs to be solved to generate snapshots for the ROM. Furthermore, for the numerical solution of the PDE and generation of snapshots a combination of goal-oriented dual weighted based adaptive space-time finite element approximations of the PDE and discrete Galerkin-POD will be used. In particular, local-in-time and local-in-space dual weighted residuals for the control of the error in time and the error in space will be obtained that also provide a prediction of appropriate time steps at which snapshots are taken. The goal is the derivation of an a posteriori error estimator for the ROM error that gives us information about the number of reduced basis functions that need to be included. This novel approach will result in an Adaptive Discrete Galerkin-POD (ADGPOD) algorithm for an efficient and reliable ROM-based numerical solution of PDE constrained optimization. In addition the resulting ROMs will be demonstrated on several applications, including flow control/design problems and the optimal control of Asymmetrical-Flow Field-Flow-Fractionation processes for the fast separation of nanoparticles, proteins, and other macromolecules.The optimal design of processes and systems in engineering and life science applications often requires the optimal control/optimization of systems of nonlinear partial differential equations (PDE). The numerical solution of such problems typically amounts to the solution of large nonlinear algebraic systems requiring extensive storage and computational time. On the other hand, the design engineers are interested to run optimal designs on their PCs within a couple of minutes. This can be achieved only by a dramatic reduction of the dimension of the problem, i.e., by developing a reduced model for the underlying PDE system that captures the essential dynamics of the expensive high fidelity simulation. Although reduced order models have been shown to work well for a wide spectrum of applications, they not yet well understood from a theoretical point of view, especially for nonlinear problems. This project will provide a better theoretical foundation of reduced order models for nonlinear problems, it will develop novel algorithmic tools for the efficient generation of reliable reduced order models, and it will demonstrate the algorithms on important science and engineering applications.
该项目开发、分析和实现基于投影的降阶模型 (ROM),用于解决与非线性演化偏微分方程 (PDE) 相关的优化问题。这些 ROM 确定一个子空间,其中包含非线性演化 PDE 的基本(用于优化)动力学,并将这些 PDE 投影到该子空间上。如果子空间很小,优化问题中的原始非线性偏微分方程可以用一个小的常微分方程组代替,并且可以有效地求解所得的近似优化问题。高效生成 ROM 并进行误差估计以监控 ROM 的质量具有挑战性。该项目扩展并集成了面向目标的自适应网格细化、适当正交分解 (POD) 和模型管理方法的优化思想,以克服这些挑战。具体来说,来自优化的模型管理思想用于确定需要求解非线性演化 PDE 的优化参数以生成 ROM 的快照。此外,对于 PDE 的数值求解和快照的生成,将使用 PDE 的面向目标的双加权自适应时空有限元近似和离散 Galerkin-POD 的组合。特别地,将获得用于控制时间误差和空间误差的局部时间和局部空间双加权残差,其还提供对拍摄快照的适当时间步长的预测。目标是推导 ROM 误差的后验误差估计器,为我们提供有关需要包含的简化基函数数量的信息。这种新颖的方法将产生自适应离散伽辽金-POD (ADGPOD) 算法,用于高效可靠的基于 ROM 的 PDE 约束优化数值解。此外,所得的 ROM 将在多种应用中进行演示,包括流量控制/设计问题以及用于快速分离纳米粒子、蛋白质和其他大分子的非对称流场流分级过程的优化控制。过程的优化设计工程和生命科学应用中的系统通常需要对非线性偏微分方程 (PDE) 系统进行最优控制/优化。此类问题的数值求解通常相当于大型非线性代数系统的求解,需要大量的存储和计算时间。另一方面,设计工程师有兴趣在几分钟内在他们的 PC 上运行最佳设计。这只能通过大幅缩小问题的维度来实现,即通过为底层 PDE 系统开发简化模型来捕获昂贵的高保真度模拟的基本动态。尽管降阶模型已被证明适用于广泛的应用,但从理论角度来看,它们尚未得到很好的理解,特别是对于非线性问题。该项目将为非线性问题的降阶模型提供更好的理论基础,将开发新的算法工具来有效生成可靠的降阶模型,并将在重要的科学和工程应用中演示算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Heinkenschloss其他文献

Interpolatory model reduction of quadratic-bilinear dynamical systems with quadratic-bilinear outputs
具有二次双线性输出的二次双线性动力系统的插值模型简化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Alejandro N. Diaz;Matthias Heinkenschloss;I. V. Gosea;A. Antoulas
  • 通讯作者:
    A. Antoulas
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
  • DOI:
    10.2172/921606
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter
  • 通讯作者:
    E. Keiter
g Institut für Mathematik
g 数学研究所
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Matthias Heinkenschloss;Ronald H. W. Hoppe;Danny C. Sorensen
  • 通讯作者:
    Danny C. Sorensen

Matthias Heinkenschloss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Heinkenschloss', 18)}}的其他基金

Novel Multiple-Shooting Algorithms for Optimization Governed by Time-Dependent Partial Differential Equations
时相关偏微分方程控制的新型多重射击优化算法
  • 批准号:
    1819144
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Numerical Solution of Constrained Optimization Problems Governed by Partial Differential Equations with Uncertain Parameters
参数不确定的偏微分方程约束优化问题的数值求解
  • 批准号:
    1522798
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Efficient Solution of Advection Dominated PDE Constrained Optimization Problems
平流主导偏微分方程约束优化问题的高效求解
  • 批准号:
    0915238
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Multigrid Methods for PDE Constrained Optimization
协作研究:偏微分方程约束优化的多重网格方法
  • 批准号:
    0511624
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
  • 批准号:
    0121360
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Optimization of Parabolic Systems: Iterative Methods, Suboptimal Controls, and Preconditioning
抛物线系统的优化:迭代方法、次优控制和预处理
  • 批准号:
    0075731
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9872009
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimization Methods for Optimal Control and Parameter Identification Problems
数学科学:最优控制和参数辨识问题的优化方法
  • 批准号:
    9403699
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Fibulin2通过EGFR-JAK1-STAT1通路抑制巨噬细胞M1型极化减少脓毒症多器官功能障碍发生的机制研究
  • 批准号:
    82302435
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
严重发热伴血小板减少综合征病毒脑炎的致病机制及其防治药物研究
  • 批准号:
    82304383
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
P2RY2通过Miro1介导的线粒体质量控制途径保护脑内皮细胞损伤减少缺血性脑卒中溶栓后出血性转化的作用研究
  • 批准号:
    82301498
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去脂软肝方基于“脾主肌肉”理论从AMPK信号通路防治代谢相关脂肪性肝病合并骨骼肌减少症分子机制研究
  • 批准号:
    82360886
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
星形胶质细胞AC3亚群减少介导类淋巴系统损伤促进Aβ沉积在放射性认知功能障碍中的机制研究
  • 批准号:
    82304066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Collaborative Care PrTNER (Prevention, Treatment, Navigation, Engagement, Resource) Project
协作护理 PrTNER(预防、治疗、导航、参与、资源)项目
  • 批准号:
    10743133
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
  • 批准号:
    2053429
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
  • 批准号:
    2053358
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
  • 批准号:
    2130695
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了