Discontinuous Galerkin Methods for Problems with Fractional Derivatives
解决分数阶导数问题的不连续伽辽金方法
基本信息
- 批准号:1115416
- 负责人:
- 金额:$ 31.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this effort the investigator and his student will consider developments of discontinuous Galerkin methods suitable for solving fractional differential equations. Motivated by a series of preliminary but very encouraging computational experiments, local discontinuous Galerkin methods for both fractional ordinary and partial differential equations will be considered. These initial computational observations supports a number of conjectures and these will guide the development and analysis of the proposed methods. While specific target applications are not considered detail, problems of a more practical character such as computational efficiency, multi-dimensional problems, and alternative formulations will be addressed in the latter part of the effort.While the notion of fractional calculus is as old as that of classical calculus introduced by Newton, the development and analysis of fractional calculus and fractional equations is not nearly as mature. However, during the last few decades fractional calculus has emerged as a natural and important description for a broad range of non-classical phenomena in the applied sciences and engineering. Examples can be found anomalous transport processes, sub-diffusion, and problems dominated by memory effects. Applications of such models are found in wide range of areas such as porous, visco-elastic, or biological flows, flow of crude oil in reservoirs, fusion plasma problems, modeling of properties of complex materials, financial markets etc. The planned activities seek to develop efficient and accurate computational techniques to allow application scientists and engineers to more effectively solve this important class of models.
在这项工作中,研究者和他的学生将考虑开发适合求解分数阶微分方程的不连续伽辽金方法。在一系列初步但非常令人鼓舞的计算实验的推动下,将考虑分数常微分方程和偏微分方程的局部不连续伽辽金方法。这些最初的计算观察支持了许多猜想,这些猜想将指导所提出方法的开发和分析。虽然没有详细考虑具体的目标应用,但更实际的问题,例如计算效率、多维问题和替代公式,将在后期工作中得到解决。虽然分数阶微积分的概念很古老与牛顿引入的经典微积分相比,分数阶微积分和分数方程的发展和分析还远没有那么成熟。然而,在过去的几十年里,分数阶微积分已经成为应用科学和工程中广泛的非经典现象的自然而重要的描述。例子包括异常传输过程、次扩散和记忆效应主导的问题。此类模型的应用广泛,例如多孔、粘弹性或生物流、油藏中的原油流动、聚变等离子体问题、复杂材料特性建模、金融市场等。计划的活动旨在开发高效、准确的计算技术,使应用科学家和工程师能够更有效地解决这一类重要的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johnny Guzman其他文献
Johnny Guzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johnny Guzman', 18)}}的其他基金
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
- 批准号:
2309606 - 财政年份:2023
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Finite Element Exterior Calculus with Smoother Piecewise Polynomials
具有更平滑分段多项式的有限元外微积分
- 批准号:
1913083 - 财政年份:2019
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Topics in the analysis of finite elements
有限元分析主题
- 批准号:
1318108 - 财政年份:2013
- 资助金额:
$ 31.09万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Finite Element Exterior Calculus"
NSF/CBMS 数学科学区域会议 - “有限元外微积分”
- 批准号:
1138011 - 财政年份:2011
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Hybridizable Discontinuous Galerkin Methods for Partial Differential Equations and Theoretical Questions in Finite Elements
偏微分方程与有限元理论问题的混合间断伽辽金法
- 批准号:
0914596 - 财政年份:2009
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
相似国自然基金
面向多尺度目标瞬态/宽频带电磁特性的高效建模方法研究
- 批准号:61901002
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
三维集成电路多物理场仿真快速算法研究及应用
- 批准号:61871340
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
用于复杂多尺度电磁问题的新型非共形积分方程方法研究
- 批准号:61801097
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
射频系统强电磁脉冲效应高效时域建模方法研究
- 批准号:61871228
- 批准年份:2018
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 31.09万 - 项目类别:
Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
- 批准号:
568008-2022 - 财政年份:2022
- 资助金额:
$ 31.09万 - 项目类别:
Postdoctoral Fellowships