Numerical methods for the moving contact line problem

动接触线问题的数值方法

基本信息

  • 批准号:
    1114827
  • 负责人:
  • 金额:
    $ 17.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

Contact lines arises as the intersection of fluid interfaces with solid surfaces. For a long time, this area of study has been plagued with conflicting theories and uncertainties regarding how the problem should be modeled. The main difficulty stems from the fact that classical hydrodynamics (specifically, the Navier-Stokes equation with the no-slip boundary condition) predicts a non-integrable singularity for the viscous stress at the moving contact line. In this project, the moving contact line problem is to be systematically studied with the help of macroscopic thermodynamics, microscopic molecular dynamics, and numerical simulations. A ``first-principle'' contact line model is derived based on principles of thermodynamics and molecular dynamics simulations. Novel numerical methods will be developed for the contact line model, and will be applied to study problems of both practical and theoretical interests, including the contact line dynamics on heterogeneous surfaces. The asymptotic behavior of the contact line model as the slip length goes to zero will be investigated with the help of numerics and asymptotic analysis.A contact line is the intersection of three phases, ofter two fluid phases and a solid phase. The two fluid phases can either be two immiscible fluids such as water and oil, or two phases of the same substance, such as the liquid and vapor phase of water. The solid phase is usually the container for the fluids. For this reason, the contact line is also the boundary of the interface between the two fluid phases, and is therefore an ubiquitous part of interfacial phenomena. Contact lines also arise in many applications such as coating, printing, oil production, and in many micro-fluidic devices. The main difficulty of the moving contact line problem stems from the fact that classical hydrodynamics predicts an infinite rate of energy dissipation which simply implies that contact lines cannot move. In this project, the PI will derive a first-principle contact line model based on thermodynamics principles and molecular dynamics simulations. Novel numerical methods will be developed and will be applied to study problems of practical interests, such as the contact line dynamics on heterogeneous surfaces.
当流体界面与固体表面相交时,就会出现接触线。长期以来,这一研究领域一直饱受相互矛盾的理论和关于如何建模问题的不确定性的困扰。主要困难源于经典流体动力学(特别是具有无滑移边界条件的纳维-斯托克斯方程)预测移动接触线处粘性应力的不可积奇点。本项目将借助宏观热力学、微观分子动力学和数值模拟对动接触线问题进行系统研究。 “第一原理”接触线模型是根据热力学和分子动力学模拟原理推导出来的。将为接触线模型开发新的数值方法,并将应用于研究实际和理论问题,包括异质表面上的接触线动力学。将借助数值和渐近分析来研究接触线模型当滑移长度趋于零时的渐近行为。接触线是三相(通常是两个流体相和一个固相)的交点。两个流体相可以是两种不混溶的流体,例如水和油,也可以是同一物质的两个相,例如水的液相和气相。固相通常是流体的容器。因此,接触线也是两个流体相之间界面的边界,因此是界面现象中普遍存在的部分。接触线还出现在许多应用中,例如涂层、印刷、石油生产以及许多微流体装置。移动接触线问题的主要困难源于这样一个事实:经典流体动力学预测能量耗散率是无限的,这简单地意味着接触线不能移动。在这个项目中,PI将基于热力学原理和分子动力学模拟推导出第一原理接触线模型。将开发新的数值方法并将其应用于研究实际感兴趣的问题,例如异质表面上的接触线动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Vanden-Eijnden其他文献

Eric Vanden-Eijnden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Vanden-Eijnden', 18)}}的其他基金

Statistical and Computational Foundations of Deep Generative Models
深度生成模型的统计和计算基础
  • 批准号:
    2134216
  • 财政年份:
    2021
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Continuing Grant
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
  • 批准号:
    2012510
  • 财政年份:
    2020
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Computation of instantons in complex nonlinear systems.
合作研究:复杂非线性系统中瞬子的计算。
  • 批准号:
    1522767
  • 财政年份:
    2016
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
Collaborative Research: On-the-fly free energy parameterization in molecular simulations
合作研究:分子模拟中的动态自由能参数化
  • 批准号:
    1207432
  • 财政年份:
    2012
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
Workshop on Modern Perspectives in Applied Mathematics; New York City, NY
应用数学现代视角研讨会;
  • 批准号:
    0904087
  • 财政年份:
    2009
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Methods for the Molecular Simulation of Sensory Mechanotransduction Channels
合作研究:感觉机械传导通道分子模拟的多尺度方法
  • 批准号:
    0718172
  • 财政年份:
    2007
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
AMC-SS: Theory and Modeling of Rare Events
AMC-SS:罕见事件的理论和建模
  • 批准号:
    0708140
  • 财政年份:
    2007
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
CAREER: Transition Pathways in Complex Systems. Theory and Numerical Methods.
职业:复杂系统中的过渡途径。
  • 批准号:
    0239625
  • 财政年份:
    2003
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant
Statistical Description of Stochastic Dynamical Systems
随机动力系统的统计描述
  • 批准号:
    0209959
  • 财政年份:
    2002
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Standard Grant

相似国自然基金

几类自由边界/移动界面问题的新的高精度数值方法
  • 批准号:
    12261070
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
基于调和映射的非结构高阶网格生成与自适应及其应用研究
  • 批准号:
    11901577
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于移动传感器信息的建筑热环境预测方法研究
  • 批准号:
    51908005
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
界面问题的高阶有限体积元方法及理论分析研究
  • 批准号:
    11801226
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
反常传热传质分数阶移动边界模型中多参数数值反演算法的研究
  • 批准号:
    11701467
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Discovery Grants Program - Individual
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
  • 批准号:
    RGPIN-2016-04628
  • 财政年份:
    2021
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2021
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2021
  • 资助金额:
    $ 17.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了