Topics in Applied Partial Differential Equations

应用偏微分方程主题

基本信息

  • 批准号:
    1104415
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The project covers several topics. The first is the development of new methods for analysis of active scalar equations. These are nonlinear and nonlocal partial differential equations that, in particular, include classical two-dimensional Euler equation describing ideal fluid flow, and surface quasi-geostrophic equation arising in atmospheric science. Active scalars have been used to model a wide range of phenomena in nature, including formation of fronts in atmosphere, diffusion in porous medium and evolution of vortex sheets. Research will build on recent work of the principal investigator (PI) by finding more general maximum principles (bounds controlling solutions). A novel aspect of this research is that these bounds are nonlocal, which may be just the right fit for nonlocal equations like active scalars. New techniques are expected to provide progress on key questions in mathematical fluid mechanics involving structure of solutions to active scalar equations, their regularity and possible singularity formation. The second direction focuses on enhancement of diffusion by fluid flow. Numerous processes in nature and engineering, starting from nuclear burning in stars to combustion in engines to reactions in living organisms depend on this phenomenon. The goal is, building on the earlier research of the PI, to improve understanding of flows that are most efficient in speeding up diffusion and mixing. The problem is at the interface of partial differential equations, dynamical systems and Fourier analysis. The methods to be developed here will be relevant in a more general context. They apply in problems that involve convergence to equilibrium in systems that contain both dissipative and fast unitary parts of dynamics. The third direction, biomixing, is motivated by a problem of coral broadcast spawning that has been communicated to the PI by an oceanographer. It involves studying improvement of the efficiency of biological reactions by chemotaxis. A model is proposed that adds chemotaxis term to the previously studied models of the process. The effect chemotaxis has on fertilization rate is likely to be crucial for health of many biosystems. The goal of this direction of the project will be to better understand coral spawning process and quantify an important role chemotaxis plays in achieving the reproduction success.The project focuses on several problems in fluid mechanics. In one direction, novel techniques are developed that will provide insight into behavior of solutions to equations modeling diverse phenomena from temperature evolution in the atmosphere to traffic flow dynamics. In other direction, the problem of mixing in fluid flow will be studied, and classes of flows that are most efficient mixers will be identified. The question of efficient mixing is of interest in many industries, including food processing and chemical engineering. Another direction of the project research improves reproduction models for a class of marine animals including corals. Coral atolls are important ecosystems that are under stress worldwide due to climate change and pollution. The models that will be developed in the project are important for better understanding of coral life cycle, and will be of interest in oceanography and ecology. The project has a significant and broad training component, and will involve a postdoc, graduate and undergraduate students working on problems related to the project research.
该项目涵盖多个主题。首先是开发主动标量方程分析的新方法。这些是非线性和非局部偏微分方程,特别包括描述理想流体流动的经典二维欧拉方程,以及大气科学中出现的表面准地转方程。主动标量已被用来模拟自然界中的各种现象,包括大气中锋面的形成、多孔介质中的扩散以及涡旋片的演化。研究将建立在首席研究员 (PI) 最近的工作基础上,寻找更通用的最大原理(边界控制解决方案)。这项研究的一个新颖之处是这些界限是非局部的,这可能正好适合像主动标量这样的非局部方程。新技术有望在数学流体力学的关键问题上取得进展,这些问题涉及主动标量方程的解的结构、它们的规律性和可能的​​奇点形成。第二个方向侧重于通过流体流动增强扩散。自然和工程中的许多过程,从恒星的核燃烧到发动机的燃烧,再到生物体的反应,都依赖于这种现象。目标是在 PI 早期研究的基础上,提高对加速扩散和混合最有效的流动的理解。该问题存在于偏微分方程、动力系统和傅立叶分析的交叉点上。这里要开发的方法将在更一般的背景下相关。它们适用于涉及包含动力学耗散部分和快速酉部分的系统中收敛到平衡的问题。第三个方向是生物混合,其动机是由海洋学家向 PI 传达的珊瑚广播产卵问题。它涉及研究通过趋化性提高生物反应的效率。提出了一个模型,将趋化项添加到先前研究的过程模型中。趋化性对受精率的影响可能对许多生物系统的健康至关重要。该项目这个方向的目标是更好地了解珊瑚产卵过程并量化趋化性在实现繁殖成功中所起的重要作用。该项目重点关注流体力学中的几个问题。在一个方向上,新技术的开发将提供对模拟从大气温度演变到交通流动力学等各种现象的方程解的行为的洞察。在其他方向上,将研究流体流动中的混合问题,并且将识别最有效混合器的流动类别。有效混合的问题引起了许多行业的关注,包括食品加工和化学工程。该项目研究的另一个方向是改进包括珊瑚在内的一类海洋动物的繁殖模型。珊瑚环礁是重要的生态系统,由于气候变化和污染,全球范围内都面临着压力。该项目将开发的模型对于更好地了解珊瑚生命周期非常重要,并且将引起海洋学和生态学的兴趣。该项目具有重要而广泛的培训内容,将涉及博士后、研究生和本科生,致力于解决与项目研究相关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kiselev其他文献

a journal of mathematics
数学杂志
  • DOI:
    10.1086/bblv220n1p1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yishu Gong;Siming He;Alexander Kiselev;James Lim;Omar Melikechi;Keenan Powers
  • 通讯作者:
    Keenan Powers
Small scale creation in active scalars
活动标量中的小规模创建
  • DOI:
    10.1007/978-3-030-54899
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev
Transfer matrices and transport for Schrödinger operators
薛定谔算子的传递矩阵和传输
  • DOI:
    10.5802/aif.2034
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Germinet;Alexander Kiselev;Serguei Tcheremchantsev
  • 通讯作者:
    Serguei Tcheremchantsev
Some Examples in One-Dimensional “Geometric” Scattering on Manifolds
流形上一维“几何”散射的一些例子
  • DOI:
    10.1006/jmaa.1997.5497
  • 发表时间:
    1997-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev

Alexander Kiselev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kiselev', 18)}}的其他基金

Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
RTG: Training Tomorrow's Workforce in Analysis and Applications
RTG:培训未来的分析和应用劳动力
  • 批准号:
    2038056
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2006372
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1848790
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1712294
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Topics in Applied PDE
应用偏微分方程主题
  • 批准号:
    1412023
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1535653
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1453199
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159133
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

“软骨损伤区域靶向性干细胞支架”的研发在部分软骨缺损治疗中的应用研究
  • 批准号:
    82302776
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑磁滞现象的部分元等效电路理论及应用研究
  • 批准号:
    52377014
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维偏振部分相干光的自旋-轨道角动量特性及其应用研究
  • 批准号:
    62305146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一类部分可分非光滑非凸问题的正则化研究及其在大数据优化中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效率部分功率模式调节在空间行波管放大器中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
  • 批准号:
    9751025
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
Partial Support of the Board on Mathematical Sciences and Anayltics and the Committee on Applied and Theoretical Statistics
数学科学和分析委员会以及应用和理论统计委员会的部分支持
  • 批准号:
    1820527
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
RTG: Dynamics, Probability, and Partial Differential Equations in Pure and Applied Mathematics
RTG:纯粹数学和应用数学中的动力学、概率和偏微分方程
  • 批准号:
    1645643
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1453199
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了