Spectral theory of Complex Laplacians and Applications
复拉普拉斯谱理论及其应用
基本信息
- 批准号:1101678
- 负责人:
- 金额:$ 14.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex analysis of several variables is a branch of mathematics where analysis, algebra, and geometry intertwine. The complex Laplacians studied in this project are the second-order differential operators associated with the Cauchy-Riemann or tangential Cauchy-Riemann complexes. The main goal of the project is to study the spectral theory of these Laplacians, in particular, the interplay between the spectral behavior of the complex Laplacians and the geometric structure of the underlying spaces. Problems to be addressed in this project include explicit computations, positivity, pure discreteness, and stability of the spectrum. The principal investigator will also study boundary behavior of the Bergman and Szego kernels, as well as the relationship between these kernels.Complex analysis is an essential tool in physics and engineering. The classical differential operators known under their technical names as the Dirichlet- and Neumann-Laplacians have been used to study heat diffusion and fluid dynamics by physicists and engineers for more than two centuries. The so-called complex Laplacians are the analogues of these classical operators in the setting of complex analysis in several variables. Spectral theory of differential operators plays an important role in many areas of biological, medical, and physical sciences. For example, the inverse problem--the problem of determining the shape from spectral properties--has applications in fields such as medical imaging. Pure discreteness of the spectra of the complex Laplacians is intimately related to diamagnetism and paramagnetism, topics widely studied in quantum physics and chemistry. Ideas and techniques developed in this project can potentially have repercussions in other branches of mathematics and sciences. The project also has significant impact on the development of human resources: the principal investigator will develop topics courses and engage graduate and undergraduate students in research activities. Research in this project will be incorporated into the teaching and learning process. In addition, this project will also facilitate interdisciplinary research activities among mathematicians, biologists, and computer scientists.
多个变量的复杂分析是数学的一个分支,其中分析、代数和几何相互交织。本项目中研究的复拉普拉斯算子是与柯西-黎曼复形或切向柯西-黎曼复形相关的二阶微分算子。该项目的主要目标是研究这些拉普拉斯算子的谱理论,特别是复杂拉普拉斯算子的谱行为与底层空间的几何结构之间的相互作用。该项目要解决的问题包括显式计算、正性、纯离散性和频谱的稳定性。首席研究员还将研究 Bergman 和 Szego 核的边界行为,以及这些核之间的关系。复分析是物理学和工程学中的重要工具。两个多世纪以来,物理学家和工程师一直使用狄利克雷算子和诺伊曼拉普拉斯算子来研究热扩散和流体动力学。所谓的复拉普拉斯算子是在多个变量的复分析设置中这些经典算子的类似物。微分算子谱理论在生物、医学和物理科学的许多领域中发挥着重要作用。例如,逆问题——根据光谱特性确定形状的问题——在医学成像等领域有应用。复杂拉普拉斯光谱的纯粹离散性与抗磁性和顺磁性密切相关,这两个主题在量子物理和化学中得到广泛研究。该项目中开发的想法和技术可能会对数学和科学的其他分支产生影响。该项目还对人力资源开发产生重大影响:首席研究员将开发主题课程并吸引研究生和本科生参与研究活动。该项目的研究将纳入教学过程。此外,该项目还将促进数学家、生物学家和计算机科学家之间的跨学科研究活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siqi Fu其他文献
Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway.
miR-129-3p通过SCF C-kit信号通路对慢传输型便秘Cajal间质细胞自噬的影响
- DOI:
10.18388/abp.2020_5877 - 发表时间:
2022-09-04 - 期刊:
- 影响因子:1.7
- 作者:
Heng Wang;Bingbing Ren;Jun Pan;Siqi Fu;Chun;Daqing Sun - 通讯作者:
Daqing Sun
The differential panorama of clinical features of lupus erythematosus patients with different onset ages: a cross-sectional multicenter study from China
不同发病年龄红斑狼疮患者临床特征的差异全景:来自中国的横断面多中心研究
- DOI:
10.1007/s10067-023-06661-1 - 发表时间:
2023-06-13 - 期刊:
- 影响因子:3.4
- 作者:
Yan Yu;Hui Jin;Shihang Zhou;Ming Zhao;Haijing Wu;H. Long;Siqi Fu;R. Wu;H. Yin;J. Liao;S. Luo;Yu Liu;Qing Zhang;Peng Zhang;Yixin Tan;Xin Huang;Fen Li;Guanghui Lin;Q. Lu - 通讯作者:
Q. Lu
Construction and validation of nomogram prognostic model for predicting survival in hepatoblastoma patients: a population-based study.
用于预测肝母细胞瘤患者生存的列线图预后模型的构建和验证:一项基于人群的研究。
- DOI:
10.1007/s13304-024-01814-6 - 发表时间:
2024-05-25 - 期刊:
- 影响因子:0
- 作者:
Song Wang;Siqi Fu;Rui Li;Zheng Guo;Yuchao Wang;Wei Sun;Daqing Sun - 通讯作者:
Daqing Sun
A Uniaxial Cell Stretcher In Vitro Model Simulating Tissue Expansion of Plastic Surgery
模拟整形外科组织扩张的单轴细胞担架体外模型
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Jincai Fan;Liqiang Liu;Hu Jiao;Cheng Gan;Jia Tian;Wenlin Chen;Zengjie Yang;Z. Yin - 通讯作者:
Z. Yin
Spectral Stability of the $\bar\partial-$Neumann Laplacian: Domain Perturbations.
$arpartial-$Neumann 拉普拉斯算子的光谱稳定性:域扰动。
- DOI:
- 发表时间:
2019-08-08 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Weixia Zhu - 通讯作者:
Weixia Zhu
Siqi Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siqi Fu', 18)}}的其他基金
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
2055538 - 财政年份:2021
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
1500952 - 财政年份:2015
- 资助金额:
$ 14.79万 - 项目类别:
Continuing Grant
Midwest Several Complex Variables Conference
中西部多个复杂变量会议
- 批准号:
1101665 - 财政年份:2011
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Geometric Analysis of Complex Laplacians
复杂拉普拉斯算子的几何分析
- 批准号:
0805852 - 财政年份:2008
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Differential Operators in Several Complex Variables
多个复变量中的微分算子
- 批准号:
0500909 - 财政年份:2005
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
- 批准号:
0406189 - 财政年份:2003
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
- 批准号:
0070697 - 财政年份:2000
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
相似国自然基金
复杂凝聚态中光致电荷转移动力学及光谱的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
复杂多组分生物质溶液的动力学振动光谱理论与模拟
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
复杂体系振动手性光谱的线性标度理论方法发展及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂化学键理论与晶格振动光谱学协同解析CaMgSi2O6基陶瓷的微波介电响应
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂体系激发态分子动力学和光谱的理论及其应用
- 批准号:21773075
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Complex Analysis and Spectral Theory
复分析与谱理论
- 批准号:
RGPIN-2020-04263 - 财政年份:2022
- 资助金额:
$ 14.79万 - 项目类别:
Discovery Grants Program - Individual
Spectral Theory and Complex Analysis
谱理论与复分析
- 批准号:
CRC-2015-00246 - 财政年份:2022
- 资助金额:
$ 14.79万 - 项目类别:
Canada Research Chairs
Spectral Theory and Complex Analysis
谱理论与复分析
- 批准号:
CRC-2015-00246 - 财政年份:2022
- 资助金额:
$ 14.79万 - 项目类别:
Canada Research Chairs
Complex Analysis and Spectral Theory
复分析与谱理论
- 批准号:
RGPIN-2020-04263 - 财政年份:2022
- 资助金额:
$ 14.79万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
2153561 - 财政年份:2021
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant