Combinatorics and Number Theory V

组合学与数论 V

基本信息

  • 批准号:
    1101368
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This proposal aims to investigate problems from two diverse areas in number theory andcombinatorics.The first project concerns arithmetic properties of modular forms onnoncongruence subgroups. To these forms Scholl attached motivic Galoisrepresentations, which are expected to be connected to automorphic forms according to Langlands philosophy. These Galois representations, unliketheir classical counterpart, cannot be broken into pieces in general,and should be related to automorphic forms on symplectic and orthogonal groups.Building upon her past work, PI will investigate the (potential) automorphyof Scholl representations with special symmetries, exploit consequencesof automorphy, and study congruence properties ofFourier coefficients of noncongruence forms as proposed by Atkin and Swinnerton-Dyer.The second project is to study the interplay between combinatorics,group theory and number theory through associated zeta functions. Zeta functions of varieties defined over finite fields are well-understood.Their most well-known properties are described by Weil conjectures, established in early1970's. Finite simplicial complexes are combinatorial analog of such varieties. They are expected to have zeta functions enjoying similar properties, except that Riemann Hypothesis will hold only for complexes which are spectrally optimal. One-dimensionalcomplexes are graphs, whose zeta functions have been studied since the work of Ihara in 1966.The zeta functions for higher dimensional complexes became known only recentlywhen PI and her students obtained closed form expressions for zeta functions ofcomplexes arising as quotients of the buildings of certain rank-2 Chevalley groups over p-adic fields. The approaches are mostly representation-theoretic. The PI proposes to find zeta identities for complexes arising from other groups. She also intends to explore combinatorial interpretations of these identities using the Selberg trace formula, with an eye towards establishing a connection between complex zeta functions and automorphic forms.It has been the PI's long term research goal to do fundamentalresearch in number theory and to seek applications of number theoryto combinatorics and to solve real world problems. The study of interplay between these areas has turned out to be quite fruitful. This proposal is a continuation ofthe PI's effort to pursue the same general theme. Part of the research will be carried out by PI's Ph.D. students. The results from this proposal will be disseminatedbroadly through the talks given by the PI in seminars, colloquia,conferences, short courses, and workshops. They will also beincorporated in the graduate courses to be offered by the PI. Weeklyinformal seminars will be conducted to integrate research witheducation and teaching. The PI also plans to co-organize a conference in 2013 at Banffto disseminate results related to this proposal obtained by her and her students.
该提案旨在研究数论和组合学两个不同领域的问题。第一个项目涉及非同余子群上模形式的算术性质。绍尔将动机伽罗瓦表示附加到这些形式上,根据朗兰兹哲学,这些表示预计将与自守形式联系起来。这些伽罗瓦表示与它们的经典对应物不同,一般不能被分解成碎片,并且应该与辛群和正交群上的自同构形式相关。在她过去的工作的基础上,PI 将研究具有特殊对称性的 Scholl 表示的(潜在)自同构,利用自同构的后果,并研究 Atkin 和 Swinnerton-Dyer 提出的非同余形式的傅里叶系数的同余性质。第二个项目是通过相关的 zeta 函数研究组合学、群论和数论之间的相互作用。在有限域上定义的簇的 Zeta 函数是众所周知的。它们最著名的性质是由 20 世纪 70 年代初建立的韦尔猜想描述的。有限单纯复形是此类变体的组合模拟。它们预计具有具有相似性质的 zeta 函数,但黎曼假设仅适用于光谱最优的配合物。一维复形是图,其 zeta 函数自 Ihara 于 1966 年的工作以来一直在研究。高维复形的 zeta 函数直到最近才为人所知,当时 PI 和她的学生获得了作为p-adic 域上的某些 2 阶 Chevalley 群。这些方法主要是表示理论的。 PI 建议寻找来自其他群体的复合物的 zeta 身份。她还打算利用 Selberg 迹公式探索这些恒等式的组合解释,着眼于在复杂的 zeta 函数和自同构形式之间建立联系。在数论方面进行基础研究并寻求应用一直是 PI 的长期研究目标从数论到组合数学并解决现实世界的问题。对这些领域之间相互作用的研究已证明是非常富有成果的。该提案是 PI 努力追求同一主题的延续。部分研究将由PI的博士进行。学生。该提案的结果将通过 PI 在研讨会、座谈会、会议、短期课程和讲习班中的演讲进行广泛传播。它们还将被纳入 PI 提供的研究生课程中。每周举行非正式研讨会,将研究与教育教学结合起来。 PI 还计划于 2013 年在班夫共同组织一次会议,以传播她和她的学生获得的与该提案相关的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen-Ching Li其他文献

Wen-Ching Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen-Ching Li', 18)}}的其他基金

Impact of Computation on Number Theory, July 30 - August 3, 2014
计算对数论的影响,2014 年 7 月 30 日至 8 月 3 日
  • 批准号:
    1414219
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
  • 批准号:
    1134046
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Workshop on Graphs and Arithmetic
图表与算术研讨会
  • 批准号:
    1007973
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory IV
组合数学与数论 IV
  • 批准号:
    0801096
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory III
组合数学与数论 III
  • 批准号:
    0457574
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory II
组合数学与数论 II
  • 批准号:
    9970651
  • 财政年份:
    1999
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory
组合学和数论
  • 批准号:
    9622938
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Number Theory, Combinatorics and Representation Theory (Mathematics)
数论、组合学和表示论(数学)
  • 批准号:
    9003126
  • 财政年份:
    1991
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Number Theory, Combinatorics, and Representation Theory
数学科学:数论、组合学和表示论
  • 批准号:
    8404083
  • 财政年份:
    1984
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Analytic, Algebraic and Combinatorial Number Theory
解析数论、代数数论和组合数论
  • 批准号:
    8101943
  • 财政年份:
    1981
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

数字孪生油气藏关键理论方法——D/G Transformer迭代复杂油气藏建模研究
  • 批准号:
    42330813
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
数字技术创新网络结构与企业生产率增长研究:基于专利引用数据的理论与实证
  • 批准号:
    72303018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字化赋能农业企业组织韧性提升:理论机制与实证研究
  • 批准号:
    72371105
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
时变传输配置下的射频功放动态数字预失真理论与应用研究
  • 批准号:
    62371436
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
数字经济赋能农业虚拟产业集群的理论机理与实现路径研究:基于协同创新网络视角
  • 批准号:
    72363011
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Conference: Number Theory and Combinatorics in Duluth
会议:德卢斯数论与组合学
  • 批准号:
    2309811
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了