Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences

合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述

基本信息

  • 批准号:
    1107444
  • 负责人:
  • 金额:
    $ 365.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

This award supports a Research Network in Mathematical Sciences: ?Kinetic description of emerging challenges in multiscale problems of natural sciences? (KI-net). Kinetic descriptions have traditionally played a central role in many areas of mathematical physics. In the last two decades, however, kinetic descriptions have emerged as an indispensable tool for a quantitative description of diverse phenomena, ranging from semi-conductors, polymers and plasma, to cell migrations, swarming, and neuron networks, as well as traffic, social and economic networking. It is in this context that the KI-net will foster cross-fertilization between mathematics and other scientific disciplines, with particular focus on the following three areas:* Quantum dynamics with applications to chemistry;* Network dynamics with applications to social sciences; and* Kinetic models of biological processes.The principal objectives are to foster new kinetic-based national and international collaborations; to train a future generation of researchers to address new challenges, and to sustain the United-States? leading role on the international stage in this field. The proposed KI-net will bring the full range of mathematical techniques to bear on important scientific challenges in kinetic descriptions of new phenomena in physical, biological and social sciences. The ultimate goal is the development, analysis and computation of novel kinetic descriptions with various applications in these disciplines. KI-net will offer a unique platform to carry out these objectives. It will be centered around three hubs: the Center for Scientific Computation & Math Modeling (CSCAMM) in the University of Maryland, the Institute for Computational and Engineering Science (ICES) at UT Austin, and the Department of Mathematics at the University of Wisconsin-Madison. At the initial stage, they will inter-connect 12 nodes through a series of edges, involving 25 core participants. KI-net Research Network home page: http://www2.cscamm.umd.edu/ki-net/.
该奖项支持数学科学研究网络:“自然科学多尺度问题中新出现的挑战的动力学描述” (KI-网)。动力学描述传统上在数学物理的许多领域中发挥着核心作用。然而,在过去的二十年中,动力学描述已成为定量描述各种现象不可或缺的工具,从半导体、聚合物和等离子体,到细胞迁移、集群和神经元网络,以及交通、社会和经济网络。正是在这种背景下,KI-net 将促进数学与其他科学学科之间的交叉融合,特别关注以下三个领域:* 量子动力学及其在化学中的应用;* 网络动力学及其在社会科学中的应用;主要目标是促进新的基于动力学的国家和国际合作;培养下一代研究人员应对新挑战并维持美国的生存?在该领域的国际舞台上处于领先地位。拟议的 KI-net 将利用全方位的数学技术来应对物理、生物和社会科学新现象的动力学描述中的重要科学挑战。最终目标是开发、分析和计算新颖的动力学描述以及在这些学科中的各种应用。 KI-net 将提供一个独特的平台来实现这些目标。它将围绕三个中心:马里兰大学科学计算和数学建模中心(CSCAMM)、德克萨斯大学奥斯汀分校计算与工程科学研究所(ICES)以及威斯康星大学数学系。麦迪逊。在初始阶段,他们将通过一系列边互连12个节点,涉及25个核心参与者。 KI-net 研究网络主页:http://www2.cscamm.umd.edu/ki-net/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Tadmor其他文献

Eitan Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Tadmor', 18)}}的其他基金

Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
  • 批准号:
    1613911
  • 财政年份:
    2016
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Standard Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
  • 批准号:
    1007674
  • 财政年份:
    2010
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Standard Grant
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
  • 批准号:
    1008397
  • 财政年份:
    2010
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
  • 批准号:
    0757227
  • 财政年份:
    2008
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Standard Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
  • 批准号:
    0742260
  • 财政年份:
    2008
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Standard Grant
Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
  • 批准号:
    0707949
  • 财政年份:
    2007
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws
非线性平衡定律中的规律性和临界阈值现象
  • 批准号:
    0407704
  • 财政年份:
    2004
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data
分段平滑数据的高分辨率有限差分和谱算法
  • 批准号:
    0107428
  • 财政年份:
    2001
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
  • 批准号:
    0107917
  • 财政年份:
    2001
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
  • 批准号:
    1844564
  • 财政年份:
    2017
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
  • 批准号:
    1107465
  • 财政年份:
    2012
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
  • 批准号:
    1107291
  • 财政年份:
    2012
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: RNMS: Statistical Methods for Atmospheric and Oceanic Sciences
合作研究:RNMS:大气和海洋科学统计方法
  • 批准号:
    1106974
  • 财政年份:
    2011
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
  • 批准号:
    1107046
  • 财政年份:
    2011
  • 资助金额:
    $ 365.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了