RUI: Relating quantum and classical topology and geometry

RUI:关联量子和经典拓扑和几何

基本信息

  • 批准号:
    1105692
  • 负责人:
  • 金额:
    $ 12.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-15 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The proposed research focuses on a construction that lies at the core of quantum topology, namely the Kauffman skein algebra of a space. This combinatorial object was first defined with the Jones polynomial in mind and thus plays a central role in the corresponding Witten-Reshetikhin-Turaev topology quantum field theory for 3-manifolds. Later, it was realized in terms of hyperbolic geometry, namely as a quantization of the PSL(2,C)-character variety. However, the relationships between the various interpretations remain somewhat mysterious. By better understanding the algebraic structure of the Kauffman skein algebra, the PI hopes to facilitate further applications of quantum theory to problems in 3-manifold theory and to uncover relationships with existing classical topological invariants. This project also continues the work of Bonahon and the PI to classify representations of the Kauffman bracket skein algebra, an endeavor which combines skein theoretic arguments with the representation theory of the quantum Teichmuller space. From its inception, quantum topology has been a bridge between mathematics and mathematical physics. Topology is an area of mathematics concerned with the intrinsic properties of a space, that is, properties that are preserved under continuous deformations. This is in contrast to geometry, where there is a definite concept of distance between points in the space and deformations are not allowed. Circa 1980, researchers developed a new topological quantum field theory which, as its nomenclature suggests, drew from both quantum physics and topology. This new theory opened up exciting avenues for research, and in particular has allowed many mathematical theorems and constructions to find applications in physics, quantum computation, and beyond. Conjectured deep connections between geometry and quantum theory are too becoming clearer and is a subject of the proposed research. Indeed, the main goal is to strengthen the relationships between these three - quantum theory, topology, and geometry.
拟议的研究重点是量子拓扑核心的结构,即空间的Kauffman绞线代数。该组合物体首先是用琼斯多项式定义的,因此在相应的witten-reshetikhin-turaev拓扑拓扑范围量子科在3个manifolds中起着核心作用。 后来,它是根据双曲线几何形状实现的,即是PSL(2,c) - 特定品种的量化。 但是,各种解释之间的关系仍然有些神秘。 通过更好地理解Kauffman Skein代数的代数结构,PI希望促进量子理论在3-manifold理论中的问题上进一步应用,并发现与现有的经典拓扑不变性的关系。 该项目还延续了Bonahon和PI的工作,以对Kauffman支架Skein代数的表示形式进行分类,这是一项将Kkein理论论证与量子Teichmuller空间的代表理论相结合的努力。从成立开始,量子拓扑一直是数学和数学物理学之间的桥梁。 拓扑是与空间的固有特性有关的数学领域,即在连续变形下保存的特性。 这与几何形状形成鲜明对比的是,在空间之间的点和变形之间存在明确的距离概念。 大约1980年,研究人员开发了一种新的拓扑量子场理论,正如其命名法所暗示的那样,它源于量子物理和拓扑。 这一新理论为研究开辟了令人兴奋的途径,尤其是允许许多数学定理和构造找到物理,量子计算及其他方面的应用。 猜想的几何形状和量子理论之间的深层联系变得越来越清晰,并且是拟议研究的主题。 确实,主要目标是加强这三个量子理论,拓扑和几何形状之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Helen Wong其他文献

Sa342 FAST SCORE REAL LIFE EXPERIENCE: IMPLICATIONS FOR CLINICAL PRACTICE
  • DOI:
    10.1016/s0016-5085(21)02701-3
    10.1016/s0016-5085(21)02701-3
  • 发表时间:
    2021-05-01
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kartheek Dasari;Minh Trannguyen;Thimmaiah Theethira;Helen Wong;Marina Roytman
    Kartheek Dasari;Minh Trannguyen;Thimmaiah Theethira;Helen Wong;Marina Roytman
  • 通讯作者:
    Marina Roytman
    Marina Roytman
The Delivery of Palliative and End-of-Life Care to Adolescents and Young Adults Living with Cancer: A Scoping Review.
向患有癌症的青少年和年轻人提供姑息治疗和临终关怀:范围界定审查。
Salvage surgery for local regrowth following external beam radiotherapy followed by contact X-ray brachytherapy and 'watch & wait' for rectal cancer. Do we compromise the chance of cure?
  • DOI:
    10.1016/j.ejso.2018.01.543
    10.1016/j.ejso.2018.01.543
  • 发表时间:
    2018-03-01
    2018-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard
    Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard
  • 通讯作者:
    Mark Pritchard
    Mark Pritchard
High Performance Silicon Nitride Passive Optical Components on Monolithic Silicon Photonics Platform
单片硅光子平台上的高性能氮化硅无源光学元件
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chandran;Yusheng Bian;Won Suk Lee;Ahmed Abumazwed;Neng Liu;Luhua Xu;Hanyi Ding;A. Aboketaf;Michal Rakowski;K. Dezfulian;Arman Najafi;T. Hirokawa;Qidi Liu;A. Stricker;S. Krishnamurthy;K. McLean;R. Sporer;Michelle Zhang;Shenghua Song;Helen Wong;Salman Mosleh;D. Deptuck;Janet Tinkler;Jae Gon Lee;Vikas Gupta;A. Yu;K. Giewont;T. Letavic
    S. Chandran;Yusheng Bian;Won Suk Lee;Ahmed Abumazwed;Neng Liu;Luhua Xu;Hanyi Ding;A. Aboketaf;Michal Rakowski;K. Dezfulian;Arman Najafi;T. Hirokawa;Qidi Liu;A. Stricker;S. Krishnamurthy;K. McLean;R. Sporer;Michelle Zhang;Shenghua Song;Helen Wong;Salman Mosleh;D. Deptuck;Janet Tinkler;Jae Gon Lee;Vikas Gupta;A. Yu;K. Giewont;T. Letavic
  • 通讯作者:
    T. Letavic
    T. Letavic
Salvage surgery for local regrowth following external beam radiotherapy followed by contact X-ray brachytherapy and ‘Watch & wait’ for rectal cancer. Do we compromise the chance of cure?
  • DOI:
    10.1016/j.ejso.2017.10.145
    10.1016/j.ejso.2017.10.145
  • 发表时间:
    2017-11-01
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard
    Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard
  • 通讯作者:
    Mark Pritchard
    Mark Pritchard
共 18 条
  • 1
  • 2
  • 3
  • 4
前往

Helen Wong的其他基金

RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
  • 批准号:
    2305414
    2305414
  • 财政年份:
    2023
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
    Standard Grant
    Standard Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
  • 批准号:
    1906323
    1906323
  • 财政年份:
    2019
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
    Standard Grant
    Standard Grant
RUI: Skeins on Surfaces
RUI:表面上的绞纱
  • 批准号:
    1841221
    1841221
  • 财政年份:
    2018
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
    Standard Grant
    Standard Grant
RUI: Skeins on Surfaces
RUI:表面上的绞纱
  • 批准号:
    1510453
    1510453
  • 财政年份:
    2015
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

覆盖性质与拓扑代数及与之相关的广义度量问题研究
  • 批准号:
    12171015
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
与Fourier积分算子、均匀化相关的调和分析问题之研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
若干与鲁津型猜测相关联之问题的研究
  • 批准号:
    11671363
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
便秘与衰老的相关性研究及温阳健脾法之干预作用
  • 批准号:
    81273757
  • 批准年份:
    2012
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
(Tl,K,Rb)yFe2-xSe2化合物中的超导电性及与之相关的成分、微结构问题
  • 批准号:
    11204059
  • 批准年份:
    2012
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
  • 批准号:
    10401044
    10401044
  • 财政年份:
    2022
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
  • 批准号:
    10626677
    10626677
  • 财政年份:
    2022
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
Spatial-frequency decompositions for enhancement of source reconstruction resolution in MEG
用于增强 MEG 中源重建分辨率的空间频率分解
  • 批准号:
    10508342
    10508342
  • 财政年份:
    2022
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
Nanoparticle-Based Drug Delivery Targeting the Respiratory Neural Network
针对呼吸神经网络的纳米颗粒药物输送
  • 批准号:
    10302859
    10302859
  • 财政年份:
    2021
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别:
Reconstructing positional information in the eye from scRNA-seq and relating it to signal transduction
从 scRNA-seq 重建眼睛中的位置信息并将其与信号转导联系起来
  • 批准号:
    10318197
    10318197
  • 财政年份:
    2021
  • 资助金额:
    $ 12.48万
    $ 12.48万
  • 项目类别: