Complex Analysis and Geometry

复杂分析和几何

基本信息

项目摘要

AbstractAward: DMS-1105586Principal Investigator: Daniel M. BurnsSome of the themes emphasized in these research projects aremodern aspects of the Bohr-Sommerfeld theory from the early daysof quantum mechanics in the 1920s, value distribution theory andAhlfors currents, and Grauert tubes. In physics theBohr-Sommerfeld theory was created as a method for quantizing anintegrable classical mechanical system. The principalinvestigator interprets the Bohr-Sommerfeld conditions forquantization as a geometric property, name a triviality conditionon the holonomy of a certain flat bundle. Ongoing work seeks tounderstand the connections between singularities of Hamiltoniansand singularities of underlying complex spaces, and the geometryof the Bohr-Sommerfeld construction seems to be a central focusof the story.Value distribution theory is a framework for attempting to countsolutions to an equation in complex variables. The FundamentalTheorem of Algebra tells us that a polynomial equation of degreen in one variable has exactly n solutions over the complexnumbers, if you count repeated roots with care. More complicatedequations in a single complex variable can have infinitely manysolutions, but these are spread around the complex plane and thenumber of solutions contained in a ball of radius R about theorigin can only grow at a limited rate as R becomes large -- asituation greatly clarified by ideas introduced by the Finnishmathematician Rolf Nevanlinna in the 1920s, at about the sametime that the Bohr-Sommerfeld theory was developed in physics.One of the projects supported by this award is a project thatapplies modern geometric tools to study the distribution ofsolutions to equations in several variables.
Abstractaward:DMS-11105586原理研究者:这些研究项目中强调的主题的Daniel M. Burnsome是1920年代早期量子力学的Bohr-sommerfeld理论的Aromodern方面,价值分布理论和Ahlfors Courner和Grauert Tibes。在物理学中,创建了一种用于量化仿生经典机械系统的方法。主评论家将Bohr-Sommerfeld条件解释为Quantrization作为几何特性,将琐碎的条件命名为某个扁平捆绑包的载体。正在进行的工作寻求tounderstand的联系之间的联系,而hamiltonians和基础复杂空间的奇异性之间的联系,而Bohr-sommerfeld结构的几何形状似乎是故事的核心焦点。值分布理论是试图在复杂变量中计数方程式计算方程的框架。代数的基本理论告诉我们,如果您谨慎地计算重复的根,一个变量中的degreen的多项式方程在复合人的溶液上恰好具有N溶液。 More complicatedequations in a single complex variable can have infinitely manysolutions, but these are spread around the complex plane and thenumber of solutions contained in a ball of radius R about theorigin can only grow at a limited rate as R becomes large -- asituation greatly clarified by ideas introduced by the Finnishmathematician Rolf Nevanlinna in the 1920s, at about the sametime that the Bohr-Sommerfeld theory was developed in物理学。该奖项支持的项目之一是一个项目,该项目旨在研究现代几何工具,以研究几个变量中方程的分布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Burns其他文献

Matter Quantum Corrections to the Graviton Self-Energy and the Newtonian Potential
对引力子自能和牛顿势的物质量子修正
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Burns;A. Pilaftsis
  • 通讯作者:
    A. Pilaftsis
Temperature-sensitive contacts in disordered loops tune enzyme I activity
无序环中的温度敏感接触可调节酶 I 活性
COMPARISONS IN GLOBAL AND SEGMENTAL LEFT VENTRICULAR LONGITUDINAL STRAINS IN DEGENERATIVE MITRAL REGURGITATION PATIENTS UNDERGOING SURGICAL INTERVENTION OR PERCUTANEOUS VALVE REPAIR
  • DOI:
    10.1016/s0735-1097(21)02747-9
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Maria Vega Brizneda;Sudarshana Datta;Tom Kai Ming Wang;Patrick Collier;Daniel Burns;Amar Krishnaswamy;Marc Gillinov;Brian Griffin;Christine Jellis
  • 通讯作者:
    Christine Jellis
Branched stented anastomosis frozen elephant trunk repair: Early results from a physician-sponsored investigational device exemption study
  • DOI:
    10.1016/j.jtcvs.2023.09.069
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eric E. Roselli;Patrick R. Vargo;Faisal Bakaeen;Marijan Koprivanac;Daniel Burns;Yuki Kuramochi;Marc Gillinov;Edward Soltesz;Michael Tong;Shinya Unai;Haytham Elgharably;Xiaoying Lou;Francis Caputo;Levester Kirksey;Jonathong Quatromoni;Ali Khalifeh;Viral Patel;Frank Cikach;James Witten;Andrew Tang
  • 通讯作者:
    Andrew Tang
TCT CONNECT-117 Impact of Pre-Existing Pacemaker on Survival and Echocardiographic Outcomes After Transcatheter Aortic Valve Replacement With SAPIEN-3 Valve
  • DOI:
    10.1016/j.jacc.2020.09.131
  • 发表时间:
    2020-10-27
  • 期刊:
  • 影响因子:
  • 作者:
    Yasser Sammour;Rama Dilip Gajulapalli;Hassan Lak;Sanchit Chawla;Cameron Incognito;Arnav Kumar;Kimi Sato;Jay Patel;James Yun;Zoran Popovic;Daniel Burns;Lars Svensson;Khaldoun Tarakji;Oussama Wazni;Grant Reed;Rishi Puri;Amar Krishnaswamy;Samir Kapadia
  • 通讯作者:
    Samir Kapadia

Daniel Burns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Burns', 18)}}的其他基金

Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0805877
  • 财政年份:
    2008
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant
Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0514070
  • 财政年份:
    2005
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant
Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0104047
  • 财政年份:
    2001
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Geometry and Analysis
数学科学:复杂几何与分析
  • 批准号:
    9408994
  • 财政年份:
    1994
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Midwest Conference on Several ComplexVariables
数学科学:中西部多个复变量会议
  • 批准号:
    9216603
  • 财政年份:
    1992
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant
Characterization of the Degree of Fracturing and the Nature of Fracture Alteration from MCS Logging Data at Site 395A, 418A and 504B
根据 395A、418A 和 504B 地点的 MCS 测井数据表征断裂程度和断裂蚀变性质
  • 批准号:
    8900316
  • 财政年份:
    1989
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Midwest Conference Of Several ComplexVariables
数学科学:中西部复变量会议
  • 批准号:
    8611917
  • 财政年份:
    1986
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant

相似国自然基金

椭球几何学与任意高斯投影数学分析
  • 批准号:
    41871376
  • 批准年份:
    2018
  • 资助金额:
    57.5 万元
  • 项目类别:
    面上项目
西秦岭北缘断裂带新生代构造变形几何学-运动学分析及构造变形演化
  • 批准号:
    41772215
  • 批准年份:
    2017
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目
南海古双峰-笔架造山带构造几何学重建
  • 批准号:
    41476039
  • 批准年份:
    2014
  • 资助金额:
    93.0 万元
  • 项目类别:
    面上项目
离散数学中的样条方法研究
  • 批准号:
    11301060
  • 批准年份:
    2013
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
样条函数在离散数学中的应用
  • 批准号:
    11226326
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Complex Analysis and Random Geometry
复杂分析和随机几何
  • 批准号:
    2350481
  • 财政年份:
    2024
  • 资助金额:
    $ 30.83万
  • 项目类别:
    Standard Grant
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    $ 30.83万
  • 项目类别:
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
  • 批准号:
    10646810
  • 财政年份:
    2023
  • 资助金额:
    $ 30.83万
  • 项目类别:
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
  • 批准号:
    10722614
  • 财政年份:
    2023
  • 资助金额:
    $ 30.83万
  • 项目类别:
Role of mechanical heterogeneity in cerebral aneurysm growth and rupture
机械异质性在脑动脉瘤生长和破裂中的作用
  • 批准号:
    10585539
  • 财政年份:
    2023
  • 资助金额:
    $ 30.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了