GOALI: Flame-based Synthesis of Metal Nanoparticles at Millisecond Residence Times

GOALI:毫秒停留时间火焰合成金属纳米颗粒

基本信息

  • 批准号:
    1066945
  • 负责人:
  • 金额:
    $ 27.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

PI: Swihart, Mark Institution: SUNY at Buffalo Proposal Number: 1066945Title: GOALI: Flame-based Synthesis of Metal Nanoparticles at Millisecond Residence TimesThe PIs plan to apply the combined expertise of their University at Buffalo (SUNY) and Praxair teams to develop a new flame-based process for producing metal nanoparticles. Printed electronics, antimicrobial plastics and other applications of metal nanoparticles are rapidly growing. Currently, these particles are prepared using large quantities of solvents, high-value surfactants and polymers. A gas-phase flame-based process will provide a lower-cost, more environmentally friendly route to these nanomaterials if it can provide sufficient control of size, size distribution, and degree of agglomeration. Most large-scale production of metal oxide nanomaterials (TiO2, ZrO2, etc.) and carbon black is done in flame processes for these reasons. However, this is not the case for most metals, because they oxidize in the flame. The approach pursued here, based on a thermal nozzle technology developed at Praxair, provides the high temperature, short residence time, rapid mixing, and reducing conditions needed for metal nanoparticle production. The nozzle and downstream reactor provide a highly uniform environment for particle growth, improving control of particle size, size distribution, and morphology compared to other gas-phase processes. Most importantly, this approach decouples the precursor chemistry from the flame chemistry, allowing use of precursors such as low-cost aqueous salts that cannot be used in other flame-based methods, and allowing the residence time for particle formation to be controlled independently of the flame dynamics. Specific aims of the proposed research are to:1. Systematically study the effects of key operating parameters on single-component nanoparticle size distribution and morphology, to optimize yield and control particle size distribution.2. Explore production and structure control of multicomponent (alloy and core-shell) nanoparticles, coated metallic nanoparticles, and additional novel nanomaterials including dendritic carbon.3. Develop, validate and apply computational reactor models to understand the physico-chemical basis of the experimental results and enable predictive, rational process improvement.4. Complete a cost analysis and market analysis to identify pathways to commercialization.Intellectual Merit: The intellectual merit of this work derives from the novel adaptation of an existing technology for a promising and very different new purpose. The thermal nozzle reactor is elegant in its simplicity; it merely separates combustion from particle formation by passing the hot combustion products through a converging-diverging nozzle. The resulting hot gas jet provides effective atomization of liquid precursors and extraordinarily fast mixing. Rapid initiation and termination of particle formation (by heating and quenching) are the keys to the production of nanoparticles in the gas phase at high throughput, and this is exactly what this system provides. Moreover, the PIs will investigate the formation of alloy and core-shell particles and novel carbon nanomaterials in this system, potentially generating structures that cannot be obtained by other methods. State-of-the-art aerosol dynamics modeling will be performed in parallel with experiments, providing fundamental insight into the particle formation process. The combined expertise of the UB and Praxair teams is essential to the success of the project.Broader Impacts: The work will lead to development of a new high-throughput low-cost process for the production of metallic nanoparticles. This will have technological impact by lowering costs and expanding the range of application of these materials. Through this work, a Ph.D. student, MS students, and undergraduates will be trained in aerosol synthesis of nanomaterials and develop cross-disciplinary chemistry, materials science, and chemical engineering skills. All participants will benefit from the academic-industrial collaboration. Undergraduates will participate through the NSF REU program, and additional targeted programs such as the McNair Scholars and Louis Stokes Alliance for Minority Participation (LS-AMP) programs. This project will allow the PIs to build on their growing success in recruiting minority participants, and expand it with outreach to high-school students and teachers.Transformative Nature of this Project: This project has potential to transform the way nanoparticles of metals and other non-oxide materials are produced. This is a novel millisecond residence-time reactor for nanomaterials. The impact of this process on nanomaterials processing and aerosol reaction engineering could very well match the impact of other millisecond contact-time reactors (e.g. those developed by Lanny Schmidt et al.) on reaction engineering for reforming and partial oxidation, affecting directions of both scientific research and industrial practice.
PI:Swihart,Mark 机构:纽约州立大学布法罗分校 提案编号:1066945 标题:GOALI:毫秒停留时间的金属纳米颗粒火焰合成 PI 计划应用布法罗大学 (SUNY) 和普莱克斯团队的综合专业知识来开发一种新的基于火焰的金属纳米颗粒生产工艺。印刷电子产品、抗菌塑料和金属纳米粒子的其他应用正在快速增长。目前,这些颗粒是使用大量溶剂、高价值表面活性剂和聚合物制备的。如果基于气相火焰的工艺能够提供对尺寸、尺寸分布和团聚程度的充分控制,那么它将为这些纳米材料提供一种成本更低、更环保的途径。由于这些原因,大多数金属氧化物纳米材料(TiO2、ZrO2 等)和炭黑的大规模生产都是在火焰工艺中进行的。然而,大多数金属的情况并非如此,因为它们在火焰中会氧化。这里采用的方法基于普莱克斯开发的热喷嘴技术,提供金属纳米颗粒生产所需的高温、短停留时间、快速混合和还原条件。喷嘴和下游反应器为颗粒生长提供了高度均匀的环境,与其他气相工艺相比,改善了对颗粒尺寸、尺寸分布和形态的控制。最重要的是,这种方法将前体化学与火焰化学分离,允许使用前体,例如不能在其他基于火焰的方法中使用的低成本水盐,并允许独立于化学反应控制颗粒形成的停留时间。火焰动力学。拟议研究的具体目标是: 1.系统研究关键操作参数对单组分纳米颗粒尺寸分布和形貌的影响,以优化产量并控制颗粒尺寸分布。2.探索多组分(合金和核壳)纳米颗粒、包覆金属纳米颗粒以及包括树枝状碳在内的其他新型纳米材料的生产和结构控制。3.开发、验证和应用计算反应器模型,以了解实验结果的物理化学基础,并实现预测性、合理的过程改进。4.完成成本分析和市场分析,以确定商业化的途径。智力价值:这项工作的智力价值源自对现有技术的新颖适应,以实现有前途且截然不同的新目的。热喷嘴反应器因其简洁而优雅;它只是通过使热燃烧产物通过收敛-扩散喷嘴来将燃烧与颗粒形成分开。产生的热气体射流提供液体前体的有效雾化和极快的混合。颗粒形成的快速引发和终止(通过加热和淬火)是在气相中以高通量生产纳米颗粒的关键,而这正是该系统所提供的。此外,PI 将研究该系统中合金和核壳颗粒以及新型碳纳米材料的形成,可能产生其他方法无法获得的结构。最先进的气溶胶动力学建模将与实验同时进行,提供对颗粒形成过程的基本了解。布法罗大学和普莱克斯团队的综合专业知识对于该项目的成功至关重要。更广泛的影响:这项工作将导致开发一种新的高通量低成本金属纳米颗粒生产工艺。这将通过降低成本和扩大这些材料的应用范围来产生技术影响。通过这项工作,获得了博士学位。学生、硕士生和本科生将接受纳米材料气溶胶合成方面的培训,并培养跨学科化学、材料科学和化学工程技能。所有参与者都将从学术与工业合作中受益。本科生将通过 NSF REU 计划以及麦克奈尔学者和路易斯·斯托克斯少数族裔参与联盟 (LS-AMP) 计划等其他有针对性的计划参与。该项目将使 PI 在招募少数族裔参与者方面不断取得成功的基础上再接再厉,并将其范围扩大到高中生和教师。该项目的变革性性质:该项目有潜力改变金属和其他非金属纳米颗粒的生产方式。 -产生氧化物材料。这是一种新型的纳米材料毫秒停留时间反应器。该过程对纳米材料加工和气溶胶反应工程的影响可以很好地与其他毫秒接触时间反应器(例如 Lanny Schmidt 等人开发的反应器)对重整和部分氧化反应工程的影响相匹配,影响科学和技术的发展方向。研究和工业实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Swihart其他文献

表面
表面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
有機分子終端シリコンナノ粒子の合成と可視領域発光
有机分子封端硅纳米颗粒的合成及可见区发射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
A general hierarchical flower-shaped cobalt oxide spinel template: facile method, morphology control, and enhanced saturation magnetization
  • DOI:
    10.1039/d0tc03762a
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zheng Fu;Liang Qiao;Yang Liu;Zhengxi Xuan;Changning Li;Saranya Rajendra Pillai;Chaeeon Lee;Mark Swihart
  • 通讯作者:
    Mark Swihart

Mark Swihart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Swihart', 18)}}的其他基金

Planning Grant: Engineering Research Center for Responsive, Efficient, Livable, and Independent Sunlight-enabled Habitats (RELISH)
规划资助:响应、高效、宜居、独立的阳光栖息地工程研究中心(RELISH)
  • 批准号:
    1840467
  • 财政年份:
    2018
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Manufacturing USA: GOALI: Designing Catalytic Membrane Reactors (CMRs) for Low Temperature CO2 Utilization and Methane Dry Reforming
美国制造:GOALI:设计用于低温二氧化碳利用和甲烷干重整的催化膜反应器 (CMR)
  • 批准号:
    1804996
  • 财政年份:
    2018
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Quantitative Characterization of Behavior of Magnetic Particles and Magnetically-Labeled Biomaterials in Emerging Applications
MRI:开发用于定量表征新兴应用中磁性粒子和磁性标记生物材料行为的仪器
  • 批准号:
    1337860
  • 财政年份:
    2013
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Continuous Production of Semiconductor and Hybrid Nanocrystals by Spray Pyrolysis
通过喷雾热解连续生产半导体和混合纳米晶体
  • 批准号:
    0652042
  • 财政年份:
    2007
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Third International Symposium on Gas-Phase and Surface Chemistry of Vapor Phase Materials Processing
第三届气相材料加工的气相和表面化学国际研讨会
  • 批准号:
    0610181
  • 财政年份:
    2006
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
合作研究:纳米粒子均质化学成核的详细化学动力学模型
  • 批准号:
    0500249
  • 财政年份:
    2005
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
REU Site: Transdisciplinary Undergraduate Research Initiative On Nanostructured Semiconductors (TURIONS)
REU 网站:纳米结构半导体跨学科本科生研究计划 (TURIONS)
  • 批准号:
    0243833
  • 财政年份:
    2003
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
ITR/AP: Collaborative Research - Enabling Microscopic Simulators to Perform System-Level Analysis
ITR/AP:协作研究 - 使微观模拟器能够执行系统级分析
  • 批准号:
    0205201
  • 财政年份:
    2002
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
纳米颗粒均匀化学成核的详细化学动力学模型
  • 批准号:
    0087315
  • 财政年份:
    2000
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant

相似国自然基金

基于火焰法研究石墨烯缺陷与纳米孔形成的动力学机制
  • 批准号:
    12304211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于长脉冲激光诱导击穿光谱多普勒频移的燃烧场火焰流速反演方法研究
  • 批准号:
    62305314
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于激发态组分演变的富氢燃料微混火焰稳燃机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于稳定无拉伸火焰的贫燃预裂氨气层流预混燃烧特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机堆积结构尾流特征流型的表面火焰高效动态预测模型及转捩机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Residential Dust Control Intervention to Reduce Early Childhood Exposure toChemical Mixtures
住宅灰尘控制干预措施,以减少幼儿接触化学混合物
  • 批准号:
    10426573
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
Engaging residents to sustain healthier homes
让居民参与维持更健康的家园
  • 批准号:
    10352861
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
A Residential Dust Control Intervention to Reduce Early Childhood Exposure toChemical Mixtures
住宅灰尘控制干预措施,以减少幼儿接触化学混合物
  • 批准号:
    10662226
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
CKDu in Salvadoran and Nicaraguan Agricultural Communities
萨尔瓦多和尼加拉瓜农业社区的 CKDu
  • 批准号:
    10471958
  • 财政年份:
    2021
  • 资助金额:
    $ 27.88万
  • 项目类别:
CKDu in Salvadoran and Nicaraguan Agricultural Communities
萨尔瓦多和尼加拉瓜农业社区的 CKDu
  • 批准号:
    10471958
  • 财政年份:
    2021
  • 资助金额:
    $ 27.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了