Collaborative Research: Probing Attosecond Electron Correlation in Atoms
合作研究:探测原子中的阿秒电子相关性
基本信息
- 批准号:1068604
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The time scale of electron dynamics in matter is represented by the atomic unit of time, which is 24 attoseconds. Although isolated attosecond photon pulses were demonstrated in 2001, few laboratories have been able to own the new light source because the generation technique is very difficult. Furthermore, the existing attosecond source is not strong enough for performing attosecond pump/attosecond probe experiments. In the last five years, Chang's group has developed a technique, Double Optical Gating (DOG), which can generate isolated attosecond pulses rather easily. It also allows the up-scaling of attosecond pulse energy. With the current support from the National Science Foundation, Chang's experimental group and Hu's theoretical group work together to understand and control ultrafast electron-electron interaction in the time domain by taking advantage of the attosecond source based on the DOG scheme. We focus on the autoionization of atoms as it is dominated by the electron correlation. As the starting point, the two-electron system, helium, is chosen as the target. Unlike spectral-domain experiments performed in the past using synchrotron light, helium atoms are pumped from the ground state into either continuum states or doubly-excited states by isolated attosecond XUV pulses. The instantly-initiated electron-correlations in the doubly-excited states, their subsequent fast decay and the interference with the continuum states, are then probed either by another time-delayed attosecond XUV pulse or by an intense few-cycle near infrared (NIR) laser pulse. The attosecond probe pulse would "freeze" the motion of the two electrons and "map-out" in real time the ultrafast electron-correlation dynamics. The strong NIR field can modify the electron-electron interactions within a fraction of an optical cycle in order to manipulate and control the ultrafast electron correlations. The experiment-theory collaboration allows experimental benchmarking of the quantum-mechanical ab initio calculations, laying a foundation for studying electron dynamics in more complex atoms and molecules. Electron-electron interactions play an essential role in a wide range of fundamentally important many-body phenomena in modern chemistry, physics and biology. The broad impacts of this program are two-fold. First of all, developing tools for observing electron dynamics with an unprecedented time resolution will lead to new insights into the fundamental questions of how electron correlation plays a role in molecular structure formation. Such insights will particularly help chemists to understand electron correlations in chemical reactions better. Secondly, finding techniques to control electron dynamics with external fields can significantly advance the technologies for manipulating complex systems and chemical reactions at the fundamental electronic level. Moreover, the new attosecond light source under development can spur a revolution in ultrafast free-space communication and biomolecule imaging. The program supports three students to work at one of the most exciting forefronts of the physics. They are trained to become leaders in this new research field and experts of the next generation technologies. The experiments are conducted at the Florida Attosecond Science and Technology (FAST) laboratory, which was newly established at the University of Central Florida. A course on attosecond optics and another one on attosecond physics are offered by Chang for undergraduate and graduate students who use the attosecond facility for lab demonstrations.
物质中电子动力学的时间尺度用原子时间单位表示,即 24 阿秒。尽管孤立阿秒光子脉冲在2001年就已被证明,但由于生成技术非常困难,很少有实验室能够拥有这种新光源。此外,现有的阿秒源不足以进行阿秒泵浦/阿秒探针实验。在过去的五年里,Chang 的团队开发了一种双光门控(DOG)技术,可以相当容易地生成隔离的阿秒脉冲。它还允许扩大阿秒脉冲能量。目前在国家科学基金会的支持下,张教授的实验组和胡教授的理论组共同努力,利用基于DOG方案的阿秒源来理解和控制时域中的超快电子-电子相互作用。我们关注原子的自电离,因为它由电子相关性主导。 作为起点,选择双电子系统氦作为目标。与过去使用同步加速器光进行的谱域实验不同,氦原子通过孤立的阿秒 XUV 脉冲从基态泵浦到连续态或双激发态。然后,通过另一个延时阿秒 XUV 脉冲或强烈的少周期近红外 (NIR) 来探测双激发态中立即启动的电子相关性、随后的快速衰减以及对连续态的干扰。激光脉冲。阿秒探测脉冲将“冻结”两个电子的运动并实时“绘制”超快电子相关动力学。强近红外场可以在一个光周期的一小部分内改变电子-电子相互作用,以操纵和控制超快电子相关性。实验理论合作允许对量子力学从头计算进行实验基准测试,为研究更复杂原子和分子中的电子动力学奠定了基础。电子-电子相互作用在现代化学、物理学和生物学中广泛的基本重要的多体现象中发挥着至关重要的作用。该计划的广泛影响有两个方面。首先,开发以前所未有的时间分辨率观察电子动力学的工具将带来对电子关联如何在分子结构形成中发挥作用的基本问题的新见解。这些见解将特别帮助化学家更好地理解化学反应中的电子相关性。其次,寻找利用外部场控制电子动力学的技术可以显着推进在基本电子水平上操纵复杂系统和化学反应的技术。此外,正在开发的新型阿秒光源可以引发超快自由空间通信和生物分子成像的革命。该计划支持三名学生在物理学最令人兴奋的前沿之一工作。他们接受培训,成为这一新研究领域的领导者和下一代技术的专家。 这些实验是在中佛罗里达大学新成立的佛罗里达阿托秒科学技术(FAST)实验室进行的。 张为使用阿秒设施进行实验室演示的本科生和研究生开设了一门阿秒光学课程和另一门阿秒物理学课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zenghu Chang其他文献
Properties of liquid silicon observed by time-resolved x-ray absorption spectroscopy.
通过时间分辨 X 射线吸收光谱观察液态硅的性质。
- DOI:
10.1103/physrevlett.91.157403 - 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
Steven L. Johnson;P. Heimann;A. M. Lindenberg;Harald O. Jeschke;Martin E. Garcia;Zenghu Chang;R. W. Lee;J. Rehr;Roger Falcone - 通讯作者:
Roger Falcone
常磁性カイラル系における電流誘起磁性の観測
顺磁手性系统中电流感应磁性的观察
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nariyuki Saito;Nicolas Douguet;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Yi Wu;Andrew Chew;Seunghwoi Han;Barry I. Schneider;Jeppe Olsen;Luca Argenti;Zenghu Chang;and Jiro Itatani;伊藤哲明 - 通讯作者:
伊藤哲明
Strong-field-induced Electron and Nuclear Dynamics in Nitric Oxide Probed by Attosecond Soft X-ray Absorption Spectroscopy
阿秒软 X 射线吸收光谱探测一氧化氮中的强场诱导电子和核动力学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nariyuki Saito;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Nobuhiro Kosugi;Yi Wu;Andrew Chew;Seunghwoi Han;Zenghu Chang;and Jiro Itatani - 通讯作者:
and Jiro Itatani
Transient strain driven by a dense electron-hole plasma.
由致密电子空穴等离子体驱动的瞬态应变。
- DOI:
10.1103/physrevlett.91.165502 - 发表时间:
2002 - 期刊:
- 影响因子:8.6
- 作者:
M. DeCamp;D. A. Reis;A. Cavalieri;P. Bucksbaum;Roy Clarke;Roberto Merlin;Eric M. Dufresne;D. Arms;A. M. Lindenberg;A. MacPhee;Zenghu Chang;B. Lings;J. Wark;Stephen Fahy - 通讯作者:
Stephen Fahy
Chirp of the single attosecond pulse generated by a polarization gating (6 pages)
- DOI:
10.1103/physreva.71.023813 - 发表时间:
2005-02 - 期刊:
- 影响因子:2.9
- 作者:
Zenghu Chang - 通讯作者:
Zenghu Chang
Zenghu Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zenghu Chang', 18)}}的其他基金
Collaborative Research: Probing Attosecond Charge Dynamics in Atoms and Molecules
合作研究:探测原子和分子中的阿秒电荷动力学
- 批准号:
1806575 - 财政年份:2018
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Collaborative Research: Attosecond Charge Dynamics in Atoms and Molecules
合作研究:原子和分子的阿秒电荷动力学
- 批准号:
1506345 - 财政年份:2015
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
High order harmonic generation in aligned molecules
排列分子中的高阶谐波产生
- 批准号:
0457269 - 财政年份:2005
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
相似国自然基金
多晶钙钛矿X射线探测器非线性电流响应机理与抑制研究
- 批准号:62304236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高分辨率气溶胶特性的卫星遥感探测机理与算法模型研究
- 批准号:42375129
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于双电性源聚焦的磁共振小异常高分辨率探测机理研究
- 批准号:42304156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光增强新型类皮肤有机半导体复合器件的接近探测研究
- 批准号:62375046
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
星载单光子激光雷达浅海水深的探测机理研究
- 批准号:42371440
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Standard Grant