Scattering by Strong Long-Range Forces, Quantum Superposition States of Nanoscale Objects: Exploring Quantum Rrocesses with the Use of Atomic Clusters

强长程力的散射,纳米级物体的量子叠加态:利用原子团簇探索量子过程

基本信息

  • 批准号:
    1068292
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This research project employs the experimental techniques and capabilities of beams of mass-selected atomic nanoclusters to investigate two types of quantum phenomena, both of fundamental character but also of important practical significance. The first subject involves the influence of long-range potentials 'those of large permanent dipoles' on inelastic collisions. Specifically, absolute cross sections for electron capture by a very strong electric dipole field will be measured for the first time. In addition, the heretofore unexplored influence of a giant magnetic dipole on the capture process will be explored. Atomic clusters represent uniquely suitable targets for such measurements. The second part of the project will identify a novel quantum resonance existent at nanoscale dimensions: a cluster particle in a state corresponding to a quantum linear superposition of two geometric shapes. This identification will be accomplished via laser spectroscopy of free metal clusters with a well-defined size and isotopic composition. Optical spectroscopy of size-selected metal clusters exhibiting electronic shell structure (a.k.a. "artificial atoms") will be used to detect the influence of their isotopic mass on the collective electron resonance absorption. This peculiar isotope effect will reveal the presence of a novel quantum resonance phenomenon in the nanoscale domain: quantum superposition of cluster shape configurations.Atomic clusters are nanoscale aggregates made up of a finite number of atoms, from a few to thousands. They bridge the gap between individual atoms and molecules on one end, and larger particles (such as microstructures and aerosols) and bulk materials on the other. The ability to adjust precisely the cluster size and composition allows one to prepare quantum-size objects with useful and unusual features, and to investigate novel physical phenomena associated with these features. One property, utilized in this project, is the capability of certain clusters to generate extremely strong electric and magnetic fields in their vicinity, and to use these fields to attract and capture nearby charged particle, e.g. electrons. The project will measure the efficiency of this process, heretofore never explored for field intensities as high as those generated by the "polar" clusters. In addition to providing new fundamental insight, the results will have practical implications for understanding the interactions of ultracold molecules and ions, for the goal of achieving control of chemical reactions by externally applied fields, for investigation of magnetic nanoparticles, and for understanding processes occurring in atmospheric and interstellar environments. In the second part of the project, the ability of nanoclusters to execute quantum shape oscillations in other words, to be in a quantum superposition of two different shapes at the same time will be investigated. This experimental observation will reveal a new and distinctive case of quantum behavior appearing at the nanometer length scale. This research also has a strong conceptual overlap with nuclear physics and with the physics of ultracold atomic clouds, and may have applications in optical nanoelectronics. On the human resources side, the project will offer graduate students excellent training in a wide range of experimental and theoretical aspects of an inherently interdisciplinary field. Postdoctoral researchers will receive professional mentoring. Commitment to teaching and outreach includes ongoing active undergraduate student involvement in research, as well as contributions to university programs, science fairs, and workshops for domestic and international undergraduates.
该研究项目采用质量选择原子纳米团簇束的实验技术和能力来研究两种类型的量子现象,这两种现象既具有基本特征,又具有重要的实际意义。 第一个主题涉及“大型永久偶极子”的长程势对非弹性碰撞的影响。 具体来说,将首次测量非常强的电偶极子场捕获电子的绝对横截面。 此外,还将探讨迄今为止尚未探索的巨型磁偶极子对捕获过程的影响。 原子簇代表了此类测量的独特合适目标。 该项目的第二部分将确定一种存在于纳米尺度的新型量子共振:处于与两个几何形状的量子线性叠加相对应的状态的簇粒子。 这种识别将通过具有明确尺寸和同位素组成的自由金属簇的激光光谱来完成。 具有电子壳层结构(又名“人造原子”)的选定尺寸金属簇的光谱将用于检测其同位素质量对集体电子共振吸收的影响。 这种奇特的同位素效应将揭示纳米尺度域中存在一种新颖的量子共振现象:簇形状配置的量子叠加。原子簇是由有限数量的原子(从几个到数千个)组成的纳米级聚集体。 它们一端连接单个原子和分子,另一端连接较大颗粒(例如微观结构和气溶胶)和散装材料之间的间隙。 精确调整簇大小和组成的能力使人们能够制备具有有用和不寻常特征的量子大小物体,并研究与这些特征相关的新颖物理现象。 该项目中使用的一个特性是某些簇能够在其附近产生极强的电场和磁场,并利用这些场吸引和捕获附近的带电粒子,例如带电粒子。电子。 该项目将测量这一过程的效率,迄今为止从未探索过与“极地”星团产生的场强一样高的场强。 除了提供新的基本见解外,这些结果还将对理解超冷分子和离子的相互作用、实现通过外部施加场控制化学反应的目标、磁性纳米粒子的研究以及理解发生在超冷分子和离子中的过程具有实际意义。大气和星际环境。 在该项目的第二部分中,将研究纳米团簇执行量子形状振荡的能力,换句话说,即同时处于两种不同形状的量子叠加状态。 这项实验观察将揭示纳米长度尺度上出现的量子行为的一种新的、独特的情况。 这项研究还与核物理学和超冷原子云物理学有很强的概念重叠,并且可能在光学纳米电子学中得到应用。在人力资源方面,该项目将为研究生提供在本质上跨学科领域的广泛实验和理论方面的优秀培训。 博士后研究人员将接受专业指导。 对教学和推广的承诺包括本科生持续积极参与研究,以及对大学项目、科学博览会和国内和国际本科生研讨会的贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vitaly Kresin其他文献

Vitaly Kresin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vitaly Kresin', 18)}}的其他基金

Beam Deflection Studies of Cold Molecules and Complexes Entrapped in Helium Nanodroplets: Permanent, Metastable, and Laser-Induced Electric and Magnetic Dipole Moments
氦纳米液滴中捕获的冷分子和复合物的光束偏转研究:永久、亚稳态和激光诱导的电偶极矩和磁偶极矩
  • 批准号:
    2153255
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Metal nanoclusters as size-resolved probes of quantum materials and phenomena
金属纳米团簇作为量子材料和现象的尺寸分辨探针
  • 批准号:
    2003469
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Electric and magnetic deflection of fully field-oriented molecules within superfluid nanodroplets: A probe of simple and complex cold polar molecules
超流体纳米液滴内完全场定向分子的电和磁偏转:简单和复杂冷极性分子的探针
  • 批准号:
    1664601
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Controlling reactions, alignment, and deposition of cold molecules by external electric fields with the use of superfluid helium nanodroplets
使用超流氦纳米液滴通过外部电场控制冷分子的反应、排列和沉积
  • 批准号:
    1213410
  • 财政年份:
    2012
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Nanoclusters with High-Temperature Superconducting Pairing: Detection and Deposition
具有高温超导配对的纳米团簇:检测和沉积
  • 批准号:
    1206334
  • 财政年份:
    2012
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Beam deflection and photoabsorption studies of metal, water, and 'superatom' nanoclusters
金属、水和“超原子”纳米团簇的光束偏转和光吸收研究
  • 批准号:
    0652534
  • 财政年份:
    2007
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Giant resonances and giant dipoles: Cluster-beam spectroscopy of metal nanoparticle ions and amino acid zwitterions
巨共振和巨偶极子:金属纳米粒子离子和氨基酸两性离子的簇束光谱
  • 批准号:
    0354834
  • 财政年份:
    2004
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Charging, Relaxation, and Polarization of Free Metal Nanoclusters
自由金属纳米团簇的充电、弛豫和极化
  • 批准号:
    0098533
  • 财政年份:
    2001
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Growth, Dissociation, and Transport in Helium Nanoclusters
氦纳米团簇的生长、解离和传输
  • 批准号:
    9876991
  • 财政年份:
    1999
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Electric Polarization of Metal and Carbon Microclusters
金属和碳微团簇的电极化
  • 批准号:
    9600039
  • 财政年份:
    1996
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于可调制长周期外场诱导的强关联系统中量子态的探测与操纵研究
  • 批准号:
    12305026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有长激发态寿命和强可见光吸收钌(II)配合物光敏剂的制备及其光解水产氢性能研究
  • 批准号:
    21703155
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
长脉冲强流离子源引出电极的冷却及加工工艺研究
  • 批准号:
    11205052
  • 批准年份:
    2012
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
强亲油性长链α-烯烃两亲接枝共聚物的结构与性能
  • 批准号:
    20604021
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
对不同构造地区中强地震长.短周期震源过程的综合研究
  • 批准号:
    49274194
  • 批准年份:
    1992
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Discovery Grants Program - Individual
Short-step synthesis of long helicenes with strong circularly polarized luminescence activity
短步合成具有强圆偏振发光活性的长螺旋烯
  • 批准号:
    22K05087
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Discovery Grants Program - Individual
Standing Strong in Tribal Communities: Assessing Elder Falls Disparity
在部落社区中站稳脚跟:评估老年人的落差差异
  • 批准号:
    10395952
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
Standing Strong in Tribal Communities: Assessing Elder Falls Disparity
在部落社区中站稳脚跟:评估老年人的落差差异
  • 批准号:
    10599890
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了