FRG: Collaborative Research: Dynamical Processes in Many-Body Systems: Analysis and Simulations

FRG:协作研究:多体系统中的动态过程:分析和仿真

基本信息

  • 批准号:
    1065894
  • 负责人:
  • 金额:
    $ 62.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The quantum physics of many interacting electrons lies at the foundation of chemistry and condensed matter physics. A direct treatment of the many-electron problem is impossible due to its shear complexity: dealing with N interacting electrons requires solving partial differential equations in 3N dimensions. Equilibrium and non-equilibrium Density Functional Theories (DFT) are rigorous and formally exact theories which map the interacting N-electron problem into a non-interacting N-electron problem. The non-interacting electrons move in an effective potential that has a universal functional dependence on the total electron density. As a result, the problem is reduced to a problem in dimension 3, amenable for computation. In this proposal the PIs propose to study a number of dynamical problems in many-body quantum mechanics within an interdisciplinary environment of mathematicians and physicists. In particular, the PIs propose to develop further the mathematical foundations of density-functional theory, for equilibrium as well as the time-dependent case. The mathematical structure of the theory and its solutions will be further investigated and the insight from this analysis will be used to develop efficient numerical simulations. Particular emphasis will be given to the treatment of the spin-orbit interaction, within the full relativistic formulations and in non-relativistic formulations that include relativistic corrections. The PIs also plan to establish the foundations of the Dissipative Time-Dependent Density Functional Theory, and to apply the theory to the problem of charge and spin transport in materials.The present technological progress is in great part based on design and discovery of new materials. Nowadays, the design of advanced materials involves laboratory work and computer simulations. Enhancing the accuracy and efficiency of computer simulations will reduce the costs, broaden the array of interesting and potentially useful materials, and speed up the process of testing and characterization. This is the target of the proposed research. The plan is to combine rigorous mathematical analysis, the insights from physics, chemistry and computer simulations in order to push the boundaries of theoretical simulations of advanced materials such as nano-structured materials, topological insulators and molecular electronic devices. The proposed research could have significant technological impact in applications such as nano-science and other areas of interest such as solar cell devices and energy conversion and storage. The PIs propose to integrate research and education by involving undergraduate and graduate students, and post-doctoral associates, in an interdisciplinary environment. Special attention will be paid to the recruitment of women and students from other underrepresented groups through the utilization of a diverse number of programs at the participating institutions.
许多相互作用的电子的量子物理学在于化学和凝结物理学的基础。由于其剪切复杂性,无法直接处理多电子问题:处理n个相互作用的电子需要在3n维度中求解部分微分方程。平衡和非平衡密度函数理论(DFT)是严格且正式精确的理论,可将相互作用的N电子问题映射到非相互作用的N电子问题中。非相互作用电子以有效电位具有对总电子密度具有通用功能依赖性的有效电势。结果,该问题被简化为“维度3”中的问题,可用于计算。在此提案中,PI提议在数学家和物理学家的跨学科环境中研究多体量子力学的许多动态问题。特别是,PI提议进一步发展密度功能理论的数学基础,以达到平衡以及时间依赖性情况。该理论及其解决方案的数学结构将得到进一步研究,该分析的洞察力将用于开发有效的数值模拟。在完整的相对论表述中以及包括相对论校正的非相对论表述中,将特别强调自旋轨道相互作用。 PI还计划建立耗散时间依赖性密度功能理论的基础,并将理论应用于材料中的电荷和旋转运输问题。当前的技术进步在很大程度上是基于设计和发现新材料的。如今,高级材料的设计涉及实验室工作和计算机模拟。提高计算机模拟的准确性和效率将降低成本,扩大一系列有趣且可能有用的材料,并加快测试和表征的过程。这是拟议研究的目标。该计划是结合严格的数学分析,物理,化学和计算机模拟的见解,以突破高级材料的理论模拟的边界,例如纳米结构材料,拓扑绝缘子和分子电子设备。拟议的研究可能会对纳米科学和其他感兴趣领域(例如太阳能电池设备以及能量转换和存储)等应用产生重大的技术影响。 PIS建议通过在跨学科环境中涉及本科生和研究生以及博士后同事来整合研究和教育。通过利用参与机构的各种计划,将特别注意从其他代表性不足的群体中招募妇女和学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Weinan E其他文献

A deep potential model with long-range electrostatic interactions
具有长程静电相互作用的深电位模型
  • DOI:
    10.1063/5.0083669
    10.1063/5.0083669
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linfeng Zhang;Han Wang;Maria Carolina Muniz;Athanassios Z. Panagiotopoulos;Roberto Car;Weinan E
    Linfeng Zhang;Han Wang;Maria Carolina Muniz;Athanassios Z. Panagiotopoulos;Roberto Car;Weinan E
  • 通讯作者:
    Weinan E
    Weinan E
Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation
速度-脉冲密度公式中不可压缩流动的有限差分格式
Asymptotic analysis of quantum dynamics in crystals: the Bloch-Wigner transform, Bloch dynamics and Berry phase
晶体中量子动力学的渐近分析:布洛赫-维格纳变换、布洛赫动力学和贝里相
A Proposal on Machine Learning via Dynamical Systems
Optimization of Random Feature Method in the High-Precision Regime
高精度范围内随机特征方法的优化
共 16 条
  • 1
  • 2
  • 3
  • 4
前往

Weinan E的其他基金

Coupling Continuum and Density Functional Theories for Materials Modeling
用于材料建模的耦合连续体和密度泛函理论
  • 批准号:
    1419030
    1419030
  • 财政年份:
    2014
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Efficient Algorithms for Electronic Structure Analysis
电子结构分析的高效算法
  • 批准号:
    0914336
    0914336
  • 财政年份:
    2009
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
  • 批准号:
    0708026
    0708026
  • 财政年份:
    2007
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    0421608
    0421608
  • 财政年份:
    2004
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
  • 批准号:
    0407866
    0407866
  • 财政年份:
    2004
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Workshop on Quasiconvexity and its Applications
拟凸性及其应用研讨会
  • 批准号:
    0223926
    0223926
  • 财政年份:
    2002
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Focused Research Group: Analysis and Simulation of Magnetic Devices
合作研究:重点研究组:磁性器件的分析与仿真
  • 批准号:
    0130107
    0130107
  • 财政年份:
    2001
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
  • 批准号:
    0196162
    0196162
  • 财政年份:
    1999
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
  • 批准号:
    9629133
    9629133
  • 财政年份:
    1997
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Mathematical and Numerical Problems in Material Sciences and Fluid Mechanics
数学科学:材料科学和流体力学中的数学和数值问题
  • 批准号:
    9623137
    9623137
  • 财政年份:
    1996
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
    $ 62.26万
  • 项目类别:
    Standard Grant
    Standard Grant