FRG: Collaborative Research: Dynamical Processes in Many-Body Systems: Analysis and Simulations

FRG:协作研究:多体系统中的动态过程:分析和仿真

基本信息

  • 批准号:
    1065894
  • 负责人:
  • 金额:
    $ 62.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The quantum physics of many interacting electrons lies at the foundation of chemistry and condensed matter physics. A direct treatment of the many-electron problem is impossible due to its shear complexity: dealing with N interacting electrons requires solving partial differential equations in 3N dimensions. Equilibrium and non-equilibrium Density Functional Theories (DFT) are rigorous and formally exact theories which map the interacting N-electron problem into a non-interacting N-electron problem. The non-interacting electrons move in an effective potential that has a universal functional dependence on the total electron density. As a result, the problem is reduced to a problem in dimension 3, amenable for computation. In this proposal the PIs propose to study a number of dynamical problems in many-body quantum mechanics within an interdisciplinary environment of mathematicians and physicists. In particular, the PIs propose to develop further the mathematical foundations of density-functional theory, for equilibrium as well as the time-dependent case. The mathematical structure of the theory and its solutions will be further investigated and the insight from this analysis will be used to develop efficient numerical simulations. Particular emphasis will be given to the treatment of the spin-orbit interaction, within the full relativistic formulations and in non-relativistic formulations that include relativistic corrections. The PIs also plan to establish the foundations of the Dissipative Time-Dependent Density Functional Theory, and to apply the theory to the problem of charge and spin transport in materials.The present technological progress is in great part based on design and discovery of new materials. Nowadays, the design of advanced materials involves laboratory work and computer simulations. Enhancing the accuracy and efficiency of computer simulations will reduce the costs, broaden the array of interesting and potentially useful materials, and speed up the process of testing and characterization. This is the target of the proposed research. The plan is to combine rigorous mathematical analysis, the insights from physics, chemistry and computer simulations in order to push the boundaries of theoretical simulations of advanced materials such as nano-structured materials, topological insulators and molecular electronic devices. The proposed research could have significant technological impact in applications such as nano-science and other areas of interest such as solar cell devices and energy conversion and storage. The PIs propose to integrate research and education by involving undergraduate and graduate students, and post-doctoral associates, in an interdisciplinary environment. Special attention will be paid to the recruitment of women and students from other underrepresented groups through the utilization of a diverse number of programs at the participating institutions.
许多相互作用的电子的量子物理学是化学和凝聚态物理学的基础。由于其剪切复杂性,直接处理多电子问题是不可能的:处理 N 个相互作用的电子需要求解 3N 维的偏微分方程。平衡和非平衡密度泛函理论 (DFT) 是严格且形式精确的理论,它将相互作用的 N 电子问题映射为非相互作用的 N 电子问题。非相互作用电子在有效电势中移动,该有效电势对总电子密度具有普遍的函数依赖性。结果,问题被简化为 3 维问题,易于计算。在该提案中,PI 提议在数学家和物理学家的跨学科环境中研究多体量子力学中的许多动力学问题。特别是,PI 建议进一步发展密度泛函理论的数学基础,以实现平衡以及依赖时间的情况。该理论的数学结构及其解决方案将得到进一步研究,并且该分析的见解将用于开发有效的数值模拟。将特别强调在完整的相对论公式和包括相对论校正的非相对论公式中对自旋轨道相互作用的处理。 PI 还计划建立耗散瞬态密度泛函理论的基础,并将该理论应用于材料中的电荷和自旋输运问题。目前的技术进步在很大程度上基于新材料的设计和发现。如今,先进材料的设计涉及实验室工作和计算机模拟。提高计算机模拟的准确性和效率将降低成本,扩大有趣和潜在有用材料的范围,并加快测试和表征的过程。这是拟议研究的目标。该计划旨在将严格的数学分析、物理、化学和计算机模拟的见解结合起来,以突破纳米结构材料、拓扑绝缘体和分子电子器件等先进材料理论模拟的界限。拟议的研究可能会对纳米科学等应用和太阳能电池设备以及能量转换和存储等其他感兴趣的领域产生重大的技术影响。 PI 建议通过让本科生、研究生和博士后人员参与跨学科环境,将研究和教育结合起来。将特别关注通过利用参与机构的多种方案来招募来自其他代表性不足群体的妇女和学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weinan E其他文献

A deep potential model with long-range electrostatic interactions
具有长程静电相互作用的深电位模型
  • DOI:
    10.1063/5.0083669
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linfeng Zhang;Han Wang;Maria Carolina Muniz;Athanassios Z. Panagiotopoulos;Roberto Car;Weinan E
  • 通讯作者:
    Weinan E
Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation
速度-脉冲密度公式中不可压缩流动的有限差分格式
  • DOI:
    10.1006/jcph.1996.5537
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Weinan E;Jian‐Guo Liu
  • 通讯作者:
    Jian‐Guo Liu
Asymptotic analysis of quantum dynamics in crystals: the Bloch-Wigner transform, Bloch dynamics and Berry phase
晶体中量子动力学的渐近分析:布洛赫-维格纳变换、布洛赫动力学和贝里相
A Proposal on Machine Learning via Dynamical Systems
Optimization of Random Feature Method in the High-Precision Regime
高精度范围内随机特征方法的优化

Weinan E的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weinan E', 18)}}的其他基金

Coupling Continuum and Density Functional Theories for Materials Modeling
用于材料建模的耦合连续体和密度泛函理论
  • 批准号:
    1419030
  • 财政年份:
    2014
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Efficient Algorithms for Electronic Structure Analysis
电子结构分析的高效算法
  • 批准号:
    0914336
  • 财政年份:
    2009
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
  • 批准号:
    0708026
  • 财政年份:
    2007
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    0421608
  • 财政年份:
    2004
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Atomistic and Continuum Models of Solids
固体的原子模型和连续体模型
  • 批准号:
    0407866
  • 财政年份:
    2004
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Workshop on Quasiconvexity and its Applications
拟凸性及其应用研讨会
  • 批准号:
    0223926
  • 财政年份:
    2002
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Focused Research Group: Analysis and Simulation of Magnetic Devices
合作研究:重点研究组:磁性器件的分析与仿真
  • 批准号:
    0130107
  • 财政年份:
    2001
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
  • 批准号:
    0196162
  • 财政年份:
    1999
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
  • 批准号:
    9629133
  • 财政年份:
    1997
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical and Numerical Problems in Material Sciences and Fluid Mechanics
数学科学:材料科学和流体力学中的数学和数值问题
  • 批准号:
    9623137
  • 财政年份:
    1996
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了