EAGER: A New Framework for Balancing Deformability and Discriminability in Computer Vision

EAGER:平衡计算机视觉中的可变形性和可辨别性的新框架

基本信息

  • 批准号:
    1049032
  • 负责人:
  • 金额:
    $ 6.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Deformability and discriminability are often two "conflicting" factors in computer vision problems such as shape matching and object recognition. For example, it has been observed that strong deformation invariant descriptors often suffer from low discriminative powers for category recognition. This EAGER project explores a new framework for balancing deformability and discriminability for computer vision tasks. The framework uniformly embeds an object, which can be a 2D shape, a point set, an image, a 3D volume or a surface, in a high dimensional space named aspect space. The embedding parameter is then used to control the degree of deformation insensitivity. Both the theoretic and application sides of the proposed framework are investigated. Based on the framework, the project aims to develop three additional research goals: robust shape matching methods by selecting deformability adaptively, robust point set registration methods by dealing with articulation in the framework, and robust image matching by extracting features in the embedded aspect space. These goals are planned to be evaluated on real applications including silhouette-based foliage data retrieval, 3D marker matching in computer-based physical therapy, and image-based disease screening. The project aims to bridge the two main problems, handling deformation and improving discriminability, which relate to many subfields inside and outside computer vision. The interdisciplinary applications are expected to generate significant contributions to various fields including biodiversity studies, biomedical study, etc. The research results, including code and data, are made public available through the project website.
可变形性和可辨别性通常是形状匹配和物体识别等计算机视觉问题中的两个“冲突”因素。例如,据观察,强变形不变描述符常常遭受类别识别辨别能力低的问题。这个 EAGER 项目探索了一种平衡计算机视觉任务的可变形性和可辨别性的新框架。该框架将一个对象(可以是 2D 形状、点集、图像、3D 体积或表面)统一嵌入到称为方面空间的高维空间中。然后使用嵌入参数来控制变形不敏感的程度。对所提出框架的理论和应用方面进行了研究。基于该框架,该项目旨在开发三个额外的研究目标:通过自适应选择变形能力的鲁棒形状匹配方法,通过处理框架中的关节的鲁棒点集配准方法,以及通过提取嵌入方面空间中的特征来鲁棒图像匹配。这些目标计划在实际应用中进行评估,包括基于轮廓的树叶数据检索、基于计算机的物理治疗中的 3D 标记匹配以及基于图像的疾病筛查。该项目旨在解决处理变形和提高可辨别性这两个主要问题,这涉及计算机视觉内外的许多子领域。跨学科应用预计将对生物多样性研究、生物医学研究等各个领域产生重大贡献。研究成果,包括代码和数据,通过项目网站公开。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haibin Ling其他文献

Discriminative Level Set for Contour Tracking
轮廓跟踪的判别水平集
Vehicle classification in WAMI imagery using deep network
使用深度网络在 WAMI 图像中进行车辆分类
  • DOI:
    10.1117/12.2224916
  • 发表时间:
    2016-05-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Yi;Fan Yang;Erik Blasch;Carolyn Sheaff;Kui Liu;Genshe Chen;Haibin Ling
  • 通讯作者:
    Haibin Ling
Privacy-Protective-GAN for Privacy Preserving Face De-Identification
Privacy-Protective-GAN 用于隐私保护人脸去识别
SPAA: Stealthy Projector-based Adversarial Attacks on Deep Image Classifiers
SPAA:针对深度图像分类器的基于隐形投影仪的对抗性攻击
End-to-End Full Projector Compensation
端到端完整投影仪补偿

Haibin Ling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haibin Ling', 18)}}的其他基金

Collaborative Research: CPS: Medium: RUI: Cooperative AI Inferencein Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:用于高级驾驶员辅助系统的车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128350
  • 财政年份:
    2021
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: RUI: Cooperative AI Inferencein Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:用于高级驾驶员辅助系统的车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128350
  • 财政年份:
    2021
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
RI:Small: Improve Visual Tracking by Large Scale Learning, Diagnosis, and Evaluation
RI:Small:通过大规模学习、诊断和评估改进视觉跟踪
  • 批准号:
    2006665
  • 财政年份:
    2020
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
CAREER: High-order Tensor Analysis for Groupwise Correspondence: Theory, Algorithms, and Applications
职业:分组对应的高阶张量分析:理论、算法和应用
  • 批准号:
    2002434
  • 财政年份:
    2019
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
SCH: EXP: Cost Efficient Osteoporosis Analysis using Dental Data
SCH:EXP:使用牙科数据进行成本效益的骨质疏松症分析
  • 批准号:
    1407156
  • 财政年份:
    2014
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
CAREER: High-order Tensor Analysis for Groupwise Correspondence: Theory, Algorithms, and Applications
职业:分组对应的高阶张量分析:理论、算法和应用
  • 批准号:
    1350521
  • 财政年份:
    2014
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Contour-Assisted Visual Inference: Systems, Algorithms, and Applications
RI:小型:协作研究:轮廓辅助视觉推理:系统、算法和应用
  • 批准号:
    1218156
  • 财政年份:
    2012
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Carr-Wu损益归因新框架的期权定价与对冲:理论与中国市场实证研究
  • 批准号:
    72371208
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
语言框架策略对“专精特新”中小企业资源获取能力提升的机制研究
  • 批准号:
    72302021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
残损形状快速匹配中的度量学习新框架研究
  • 批准号:
    62101156
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于图模型贝叶斯推断的网络化雷达目标探测新框架与处理方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于GaR新框架的系统性风险混频计量与监管研究
  • 批准号:
    72171070
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
EAGER: PPER Citizen Science-Based Monitoring Framework for Contaminants of Emerging Concern in New York State Lakes
EAGER:PPER 基于公民科学的纽约州湖泊新兴污染物监测框架
  • 批准号:
    1743988
  • 财政年份:
    2017
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
EAGER: PPER Citizen Science-Based Monitoring Framework for Contaminants of Emerging Concern in New York State Lakes
EAGER:PPER 基于公民科学的纽约州湖泊新兴污染物监测框架
  • 批准号:
    1743988
  • 财政年份:
    2017
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
EAGER: A New Framework for Mobile Network Monitoring, Learning and Control
EAGER:移动网络监控、学习和控制的新框架
  • 批准号:
    1649372
  • 财政年份:
    2016
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
EAGER: Synthesis of New Ferrolites: Zeolites Containing an All-Iron Framework The First of a New Family of Transition Metal Based Zeolites?
EAGER:新型铁洛石的合成:含有全铁骨架的沸石是过渡金属基沸石新家族中的第一个吗?
  • 批准号:
    1633866
  • 财政年份:
    2016
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了