Catalothermionic Solid State Electric Generator with Nonadiabatic Functionality

具有非绝热功能的催化热固态发电机

基本信息

  • 批准号:
    1033290
  • 负责人:
  • 金额:
    $ 21.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

1033290KarpovExisting sustainable (non-fossil and non-nuclear) technologies of electric power generation can be grouped into two broad categories. The first incorporates systems and devices for the utilization of mechanical energy and conversion into electricity (wind, tidal and geothermal turbines), and the second covers the solid state electric generators designed for the conversion of solar, chemical and thermal energy directly into electricity without resorting to mechanics. These three: fuel cells, solar cells and thermoelectric generators have been the subject of intensive research. However. the high cost of solar cells and limited efficiency and lifetime of fuel cells constrain their massive implementation. While the thermoelectric generators demonstrate better lifetimes, they do not provide satisfactory efficiency and energy density in order to successfully compete with the traditional portable sources of power. PI Eduard Karpov of the University of Illinois Chicago poses the question whether there are other useful mechanisms that have been overlooked thus far in sustainable energy research.Karpov proposes a new device called a catalothermionic generator as one such possibility. These generators will incorporate the nonadiabatic energy conversion processes similar to those in solar cells, but utilize catalytic oxidation of hydrogen to water on the device surface as the energy source. The catalytic reaction leads to the chemically induced excitation of hot electrons in the catalytic metal-semiconductor nanostructures, followed by the ballistic transport of these electrons across the metal nanolayer and over the Schottky barrier. The catalothermionic generator device is comprised of a nanofilm of palladium metal as cathode, an n-type semiconductor such as SiC as the anode and an ohmic back contact and external circuit to deliver electricity to perform the work. The reaction of H2 oxidation is catalyzed at the nanofilm to generate the hot electrons. In the final stages of the work, the PI plans to demonstrate the reverse system as well. This is one in which hot holes are generated instead of hot electrons, and a p-type semiconductor material is used.The project explores the possibility and practical feasibility of a novel type of higher efficiency, chemically driven solid state electric generators. The technical impact of an improved method of energy conversion and delivery is self-apparent. The PI is opening the area of chemovoltaics, analogous to photovoltaics. Impacts will be felt in heterogeneous catalysis, surface science, nanomaterial and nanocatalysis research and sustainable energy science. For the educational and outreach aspects, this is the sort of exciting project that inspires young investigators to join up and pursue the project and science and engineering. It is also one that can be translated, although not easily, into a popular version which might help educate the more general populace as to the limits in technologies, and how science can develop new approaches to developing solutions.
1033290Karpov现有的可持续(非化石和非核)发电技术可分为两大类。第一个包含利用机械能并将其转换为电能的系统和设备(风能、潮汐能和地热涡轮机),第二个涵盖固态发电机,设计用于将太阳能、化学能和热能直接转换为电能,无需借助其他装置。对于机械师。这三种:燃料电池、太阳能电池和热电发电机一直是深入研究的主题。然而。太阳能电池的高成本以及燃料电池有限的效率和寿命限制了其大规模实施。虽然热电发电机具有更长的使用寿命,但它们无法提供令人满意的效率和能量密度,无法与传统的便携式电源成功竞争。伊利诺伊大学芝加哥分校的 PI Eduard Karpov 提出了这样的问题:在可持续能源研究中是否还存在迄今为止被忽视的其他有用机制。Karpov 提出了一种称为催化热离子发生器的新设备作为这种可能性。这些发电机将采用与太阳能电池类似的非绝热能量转换过程,但利用设备表面上的氢气催化氧化成水作为能源。催化反应导致催化金属半导体纳米结构中热电子的化学诱导激发,然后这些电子通过金属纳米层和肖特基势垒进行弹道传输。催化热离子发生器装置由作为阴极的钯金属纳米膜、作为阳极的n型半导体(例如SiC)以及欧姆背接触和外部电路组成,以提供电力以进行工作。 H2 氧化反应在纳米膜上被催化,产生热电子。在工作的最后阶段,PI 还计划演示反向系统。该项目产生热空穴而不是热电子,并使用 p 型半导体材料。该项目探索了一种新型高效化学驱动固态发电机的可能性和实际可行性。改进的能量转换和传输方法的技术影响是不言而喻的。 PI 正在开放化学光伏领域,类似于光伏发电。多相催化、表面科学、纳米材料和纳米催化研究以及可持续能源科学将受到影响。在教育和推广方面,这是一个令人兴奋的项目,可以激励年轻的研究人员加入并追求该项目和科学与工程。它也是一个可以翻译成流行版本的版本,尽管并不容易,这可能有助于教育更广大的民众了解技术的局限性,以及科学如何开发新的方法来开发解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eduard Karpov其他文献

Eduard Karpov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eduard Karpov', 18)}}的其他基金

Structural Metamaterials with Saint-Venant Edge Effect Reversal for Static Load Pattern Modification and Recognition
用于静态载荷模式修改和识别的具有圣维南边缘效应反转的结构超材料
  • 批准号:
    1634577
  • 财政年份:
    2016
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Concurrent Multiphysics Modeling of Bio-Inspired Functional Materials
仿生功能材料的并行多物理场建模
  • 批准号:
    0900498
  • 财政年份:
    2009
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant

相似国自然基金

坚硬岩层破断诱发巷道冲击地压模拟的连续-非连续方法研究及应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
基于中厚板理论的坚硬厚顶板破断致灾机制与控制准则
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
裂隙性坚硬隧道围岩的岩爆机理及强度模型研究
  • 批准号:
    51808458
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
压裂-采动效应对坚硬顶板损伤及瓦斯运移的影响机理
  • 批准号:
    51804058
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
3D打印栅格状胎体刀刃化唇面对金刚石钻头破碎坚硬岩层的影响机制研究
  • 批准号:
    41872186
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
"In-Crystallo" Solid-State Molecular Organometallic Chemistry of Methane, Ethane and Propane. Synthesis, Structures and Catalysis in Single-Crystals
甲烷、乙烷和丙烷的“晶体内”固态分子有机金属化学。
  • 批准号:
    EP/W015498/2
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Research Grant
Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Discovery Projects
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
  • 批准号:
    2327327
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了