Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

合作研究:李群上哈密顿系统的计算几何不确定性传播

基本信息

  • 批准号:
    1029445
  • 负责人:
  • 金额:
    $ 11.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative research project is concerned with the development of accurate and efficient computational uncertainty propagation techniques for nonlinear stochastic Hamiltonian systems that evolve on Lie group configuration spaces. Uncertainties in a dynamic system arise from multiple sources such as unmodeled dynamics, parametric uncertainty, and uncertainty in initial conditions. As they cannot be completely eliminated from any computational experiment or physical measurement, a careful characterization of the evolution of uncertainties is essential in scientific and engineering problems. This project involves the application of computational geometric mechanics, geometric numerical integration, noncommutative harmonic analysis, and generalized polynomial chaos techniques, and will yield mesh-free, coordinate-free methods for the numerically stable long-time propagation of uncertainty in a Hamiltonian system, while explicitly addressing the underlying stochastic and geometric properties of the system.Most mathematical models have sources of uncertainty that may arise from physical processes that are poorly understood, a lack of precise knowledge of the parameters, or incomplete information about the current state of the system, and it is important to understand how these model uncertainties affect the predictions that arise from the mathematical model. In particular, a computer prediction without some indication of the reliability and confidence in the prediction can be disastrously misleading. This project aims to address the essential task of developing accurate mathematical and numerical methods for characterizing the effects of uncertainty in complex systems, which is a particularly timely and pressing need, since mathematical models of complex systems are increasingly relied upon to inform public policy decisions with long lasting and far reaching consequences. A graduate textbook will be prepared that discusses in parallel the continuous and discrete time approach to geometric mechanics on Lie groups that aims to be accessible to professional programs in computational science, and which will be field tested in the CSME graduate program at UCSD. This textbook includes accompanying code that will facilitate the reuse of the computational infrastructure funded by this project in other applications involving uncertainty propagation on nonlinear spaces.
该合作研究项目致力于为在李群配置空间上演化的非线性随机哈密顿系统开发准确有效的计算不确定性传播技术。 动态系统中的不确定性来自多种来源,例如未建模的动力学、参数不确定性和初始条件的不确定性。 由于它们无法从任何计算实验或物理测量中完全消除,因此仔细表征不确定性的演变对于科学和工程问题至关重要。该项目涉及计算几何力学、几何数值积分、非交换调和分析和广义多项式混沌技术的应用,并将产生无网格、无坐标方法,用于哈密顿系统中不确定性的数值稳定长期传播,同时明确解决系统潜在的随机和几何属性。大多数数学模型都存在不确定性来源,这些不确定性来源可能来自对物理过程的了解甚少、缺乏对参数的精确了解或有关系统当前状态的不完整信息,它是了解这些模型不确定性如何影响数学模型的预测非常重要。特别是,如果计算机预测没有表明预测的可靠性和置信度,则可能会产生灾难性的误导。该项目旨在解决开发准确的数学和数值方法来表征复杂系统中不确定性影响的基本任务,这是一个特别及时和紧迫的需求,因为复杂系统的数学模型越来越依赖于为公共政策决策提供信息产生持久而深远的影响。将编写一本研究生教科书,并行讨论李群几何力学的连续和离散时间方法,旨在供计算科学专业课程使用,并将在加州大学圣地亚哥分校的 CSME 研究生课程中进行现场测试。本教科书包含随附的代码,这些代码将有助于在涉及非线性空间不确定性传播的其他应用中重用该项目资助的计算基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melvin Leok其他文献

Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov
  • 通讯作者:
    Nikolay Atanasov
On Properties of Adjoint Systems for Evolutionary PDEs
演化偏微分方程伴随系统的性质
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian K. Tran;Benjamin Southworth;Melvin Leok
  • 通讯作者:
    Melvin Leok
The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Classical Field Theories
经典场论的汉密尔顿-庞特里亚金原理和多重狄拉克结构
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Joris Vankerschaver; Hiroaki Yoshimura;Melvin Leok
  • 通讯作者:
    Melvin Leok
Lie Group Variational Collision Integrators for a Class of Hybrid Systems
一类混合系统的李群变分碰撞积分器
  • DOI:
    10.48550/arxiv.2310.15356
  • 发表时间:
    2023-10-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khoa Tran;Melvin Leok
  • 通讯作者:
    Melvin Leok
On the Geometry of Multi-Dirac Structures and Gerstenhaber Algebras
论多重狄拉克结构和格斯顿哈伯代数的几何
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Joris Vankerschaver; Hiroaki Yoshimura;Melvin Leok
  • 通讯作者:
    Melvin Leok

Melvin Leok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melvin Leok', 18)}}的其他基金

Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Geometric Numerical Integration of Plasma Physics and General Relativity
等离子体物理与广义相对论的几何数值积分
  • 批准号:
    1813635
  • 财政年份:
    2018
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Geometric Numerical Discretizations of Gauge Field Theories and Interconnected Systems
规范场论和互连系统的几何数值离散
  • 批准号:
    1411792
  • 财政年份:
    2014
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
  • 批准号:
    1334759
  • 财政年份:
    2013
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    1001521
  • 财政年份:
    2009
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    1010687
  • 财政年份:
    2009
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    0747659
  • 财政年份:
    2008
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    0714223
  • 财政年份:
    2007
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
  • 批准号:
    0726263
  • 财政年份:
    2007
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
  • 批准号:
    0504747
  • 财政年份:
    2005
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant

相似国自然基金

超网驱动的学习型进化计算多模态优化研究
  • 批准号:
    62306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于深度学习计算重构的环境扰动免疫型马赛克片上光谱成像技术研究
  • 批准号:
    62305250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
对两类椭圆型随机偏微分方程数值计算的研究
  • 批准号:
    12301497
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 11.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了