Collaborative Research: Experimental and theoretical study on the structure and catalytic activity of metal cluster/metal oxide interfaces
合作研究:金属簇合物/金属氧化物界面的结构和催化活性的实验和理论研究
基本信息
- 批准号:1033000
- 负责人:
- 金额:$ 29.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1033000BatzillThe most successful metal/metal oxide catalysts currently available involve highly-dispersed, low-concentration metal atoms embedded in a metal oxide surface. Palladium metal supported on cerium oxide, is an important example of a highly active catalyst, with applications as an automotive three-way catalyst, in catalytic combustion, and as a solid oxide fuel cell anode material. The activity of these metal/metal oxide catalysts can be uniquely controlled by the support surface structure. Furthermore, these low-concentration metal catalysts have demonstrated significant resistance against sintering, a common multi-component catalyst degradation mechanism, thus indicating superior resistance to heating/cooling cycles and changes in redox enviroment. However, the structure of the active site is challenging to define at the atomistic scale. For the metal-ceria (M/CeO2) catalytic system, dynamic restructuring occurs under reaction conditions and both the ceria and metal structure alter reactivity. So how then to explain the catalytic and performance behaviors of Pd on ceria? Three Investigators, A.C. van Duin and M. J. Janik of Pennsylvania State University and M. M. Batzill of the University of South Florida, hypothesize that mixed surface oxides of Ce1-xPdxO2-d may provide unique active sites with high activity and stability under certain reaction conditions. To confirm this and in order to fully develop the potential of Pd/CeOx and similar metal/metal oxide catalysts, they believe a detailed, atomistic-scale knowledge of the catalytic conversion mechanisms and the surface dynamics related to substrate-surface interactions is required for the Pd/ceria system. In a collaborative study, the PIs propose to utilize atomistic simulation with Reactive Force-Field (ReaxFF) and Density Functional Theory (DFT) approaches together with experimental surface science studies to investigate the dynamic structure and reactivity of Pd/CeO2 systems. The combined surface science and ReaxFF/DFT approach will provide detailed determination of the structure, stability, and activity of Ce1-xPdxO2-?Ô?nmixed oxide surfaces. This will help answer questions about this catalyst system.From the broader perspective, the combination of experimental and computational approaches applied to this complex catalytic system will advance the fundamental understanding of the effect of reducible oxide supports on catalyst stability and activity, as well as provide guidance towards the preparation of highly active M/CeO2 catalysts. Further, the development of an integrated, two-component simulation environment, which is validated against experiment is the outcome of this project. This collaboration between simulation and experiment will provide a roadmap for future catalytic research; the computational tools developed here are generally applicable, thus providing straightforward extension to other catalytic materials.The research program also closely integrates education and outreach activities. Specifically, at PSU, courses for engineers on atomistic-scale simulation methods will be introduced, which will be complemented by lectures and tutorials on experimental techniques.
1033000Batsill 目前最成功的金属/金属氧化物催化剂涉及嵌入金属氧化物表面的高度分散、低浓度的金属原子负载在氧化铈上的钯金属,是高活性催化剂的重要示例,可作为汽车三轮车应用。催化燃烧中的单向催化剂以及作为固体氧化物燃料电池阳极材料这些金属/金属氧化物催化剂的活性可以通过载体独特地控制。此外,这些低浓度金属催化剂表现出显着的抗烧结能力,这是一种常见的多组分催化剂降解机制,因此表明其对加热/冷却循环和氧化还原环境的变化具有优异的抵抗力。对于金属-二氧化铈 (M/CeO2) 催化体系来说,在反应条件下会发生动态重组,并且二氧化铈和金属结构都会改变反应性,因此很难在原子尺度上进行定义。宾夕法尼亚州立大学的 A.C. van Duin 和 M. J. Janik 以及南佛罗里达大学的 M. M. Batzill 三位研究人员发现,Ce1-xPdxO2-d 的混合表面氧化物可能提供具有高活性的独特活性位点。为了证实这一点并充分发挥 Pd/CeOx 和类似金属/金属氧化物催化剂的潜力,他们认为Pd/二氧化铈系统需要详细的、原子尺度的催化转化机制和与基底-表面相互作用相关的表面动力学知识。在一项合作研究中,PI 建议利用反应力场 (ReaxFF) 的原子模拟。和密度泛函理论 (DFT) 方法与实验表面科学研究一起研究 Pd/CeO2 系统的动态结构和反应性。表面科学和 ReaxFF/DFT 相结合的方法将提供详细的测定。 Ce1-xPdxO2-n混合氧化物表面的结构、稳定性和活性这将有助于回答有关该催化剂系统的问题。从更广泛的角度来看,应用于该复杂催化系统的实验和计算方法的结合将促进该系统的发展。基本了解可还原氧化物载体对催化剂稳定性和活性的影响,并为制备高活性 M/CeO2 催化剂提供指导。此外,还开发了集成的双组分模拟环境。经实验验证是该项目的成果。模拟和实验之间的合作将为未来的催化研究提供路线图;这里开发的计算工具具有普遍适用性,从而为其他催化材料提供了直接的扩展。该研究项目还紧密结合在一起。具体来说,在PSU,将为工程师推出原子级模拟方法课程,并辅之以实验技术讲座和教程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Batzill其他文献
Matthias Batzill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Batzill', 18)}}的其他基金
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
- 批准号:
2140038 - 财政年份:2021
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
Dilute Magnetic 2D-Semiconductors: Fundamentals for Device Applications
稀磁二维半导体:设备应用基础知识
- 批准号:
2118414 - 财政年份:2021
- 资助金额:
$ 29.63万 - 项目类别:
Continuing Grant
Nanostructured 2D-transition metal dichalcogenides
纳米结构二维过渡金属二硫属化物
- 批准号:
1801199 - 财政年份:2018
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
Tuning and protecting MoTe2 derived phase change materials for electronic device fabrication
调整和保护用于电子器件制造的 MoTe2 衍生相变材料
- 批准号:
1608654 - 财政年份:2016
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
- 批准号:
1505609 - 财政年份:2015
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
CAREER: Nanoscale surface properties of functional metal oxides
职业:功能性金属氧化物的纳米级表面特性
- 批准号:
0840547 - 财政年份:2009
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
相似国自然基金
PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
- 批准号:82301240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:35 万元
- 项目类别:地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于空间转录组技术筛选皮肤损伤时间特异性生物学指标及构建智能化损伤时间准确推断模型的实验性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 29.63万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 29.63万 - 项目类别:
Continuing Grant